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1. Introduction

Experimental studies of nano-scale systems such as quan-
tum dots, molecular complexes at the surface, etc. have been
intensively carried out by numerous research groups in re-
cent years. A very informative tool for high spatial resolu-
tion optical measurements is scanning near-field optical
microscopy (SNOM). In SNOM, the modifications of elec-
tromagnetic radiation, which are caused by the interaction
of a SNOM probe with an object smaller than a wavelength
of light, are detected.  The SNOM technique has been suc-
cessfully used to image with subwavelenth resolution vari-
ous surface structures exhibiting different optical contrast
mechanisms, such as real and imaginary parts of refractive
index, polarization and fluorescence [1].  Quite recently,  the
first experimental SNOM images related to variations in
second-order susceptibilities, i.e. near-field optical images
showing nonlinear optical contrast, have been reported [2,3].

Most theoretical papers dealing with the self-consistent
problem in near-field optics are based on the consideration
of the following linear integral equation (usually called
Lippmann-Schwinger equation) [4-6]:
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Here, ),,( ωRRG ′
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 is the Green dyadic of the space in which
the particle having the volume V and linear susceptibility
tensor )(ωχt  is situated.  One of the way for obtaining the
solution of Eq.(1) is discretization of Eq.(1) leading to the
(self-consistent) system of linear algebraic equations  [7]:
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In Eq.(2) it is implicitly assumed that the self-consistent field
is constant inside of each of  N subvolumes. The approxi-
mation (2) is thereby practically equivalent to the point-like
(dipole) approximation. Numerous results were obtained by
using Eq.(2) [5, 6, 8-11].

Another way of solving  the self-consistent problem (1)
consists in  using the iteration procedure, i.e.,  Born approxi-
mation of a finite (n-th) order.  This procedure implies that
multiple scattering inside the system is treated taking into
account the scattering processes up to the n-th order. Thus,

the first Born approximation )()1( RE
rr

 is obtained from

Eq.(1) with the incidence field )()0( RE
rr

 been substituted
into the integrand. This approximation corresponds to the
regime of single scattering. To take into account secondary
scattered waves one should invoke the second Born approxi-
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mation, in which the field )()1( RE
rr

 found in the first ap-
proximation is substituted in the integrand of Eq.(1). In or-
der to include multiple scattered waves of the n-th order,
one should recurrently carry out the above procedure  n times.

It should be emphasized, that  method of direct solution
of self-consistent problem by numerical solution of the set
of the linear algebraic equations (2) is more correct then the
method, in which the n-th order Born approximation is em-
ployed. In order to clarify this point let us rewrite  Eq.(1) in
the operator form
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with  J
t

 denoting the integral operator in the right part of
Eq.(1). The exact solution can then be formally expressed
in the form
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where U
t

 is the unite operator. The n-th order Born series
expansion becomes
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This expansion cannot describe the resonant interactions
occurring when the (resonant) condition ( ) 0det =− JU

tt
 is

satisfied. In such a case, any finite order of the Born ap-
proximation would not allow one to obtain the exact solu-
tion including resonances. To obtain an exact solution of
Eq.(1) one has to accomplish  exact summation of an infi-
nite series corresponding to the  iteration procedure.

The exact solution of the self-consistent integral equa-
tion (1) has been reported for some configurations. For the
situation, when particle susceptibility is a factorizing func-
tion of spatial coordinates, the effective method for direct
solution of Eq.(1) was proposed in Ref.[12]. On the other
hand, the approach using the diagram technique was pro-
posed for the same model of particle susceptibility in calcu-
lations concerned with nano-scale electrodynamics [13].

In the present work we develop the method which is based
on the diagram technique for exact solution of a self-con-
sistent equation. This method consists in exact summation
of infinite series corresponding to the iteration procedure
constructed for the self-consistent Lippmann-Schwin-ger
Eq. (1). Note that the field scattered by a probe is included
in the iteration procedure.

The proposed technique is demonstrated for general case
of spatial dependent susceptibility of a particle. Numerical
calculations are provided for simple configuration contain-
ing a probe and a sample with spatially independent suscep-
tibilities. Furthermore,  in calculations we used the approxi-
mation of point-like probe and object in the form of paral-
lelepiped.

2. Theory

Let us consider the object and a probe contained in the
medium the electro-dynamical properties of which are char-
acterized by the Green function ),,( ωRRGij ′

rr
. Let us sup-

pose that object which, in general, can be a multi-connected

body is described by non-local susceptibilities. Namely, the
effective current in the object is connected with an electri-
cal field by integral constitutive equation
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Integration in Eq.(6) is made over volume of an object which
in general case can consist of a few parts (to be multi-con-
nected one). It needs to make the next remark concerning
the form of the constitutive Eq. (6). Namely, there exist in-
dications that both linear and non-linear optical suscepti-
bilities can be in general represented in factorizing form,
i.e., the kernels of the integral Eq. (6) can be separated on
sum of products of functions dependent only on one vari-
able R

r
 or R′

r
 [14]. In this connection it could mind that in

general, the solution of Lippmann-Schwinger equation can
be obtained by methods developed for separable suscepti-
bility model (e.g. by the method developed in [12]). But,
firstly, the difficulties connected with solution of both «new»
constitutive equation and the Lippman-Schwinger equation
remain. And, secondly, there is no possibility to obtain a
self-consistent solution of Lippmann-Schwinger equation in
the case when the susceptibility )()( ωχ s

ij  is independent on
spatial coordinates. Thus, the constitutive equation in the
form of Eq.(6) will be used in this work during determina-
tion of exact solution of the Lippmann-Schwinger equation.
Then, total field in the arbitrary point of the system must
obey the equation
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in which, for brevity, the generalized Green function
),( RRij ′ℜ

rr
 is introduced. This Green function is a photon

propagator describing the propagation of photon from point
R′
r

 to point R
r

 of the system.
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The first term in Eq.(8) describes the direct propagation of

photon from point R′
r

 to point R
r

. The second term of Eq.(8)
describes a propagation of photon from  point R′

r
 to point

R
r

of the system by reradiation by the probe with volume VP
and susceptibility ),()( RRp

lk ′
rr

χ . Eq.(7) could be solved with
iteration method. The first step of an iteration procedure is
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The second step of an iteration procedure is
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The third step of an iteration procedure is
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Since a field )()( RE A
l ′

r
 in the integrand  in Eq.(20) is an

arbitrary function of  variable R′
r

, to satisfy this equation it
needs to be
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Introducing the designations
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one can obtain from Eq.(21)
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Then, from Eqs.(14) and (24) one can  find
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This expression is an exact solution of  the Lippmann-
Schwinger equation (7) for the system linear dimensions of

which are less then wavelength of external field  )()0( REi

r
.

3. The effective susceptibility

The expression for the self-consistent field in the arbitrary
point of a system (Eq.(25)) can be rewritten in terms of ef-
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Thus, the exact solution of Eq.(7) can be written as a
infinite series of iteration procedure, which in the diagram
representation [15] has a form
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The series (12) could be rewritten in the skeleton diagram
representation

→⇔+→=)(REi
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,                                            (14)

where  operator
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containing an unknown function ),( RRgij ′
rr

 is represented
as an infinite series
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This series by the next mathematical trick
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can be  rewritten in the standard Dyson equation form [15,
16]

⇔↔+↔=⇔ .                                                      (18)

To find unknown function ),( RRgij ′
rr

 let it acts by operator
(15) which is obeyed to equation (18) on an arbitrary long-
range field. As a result one can obtain the equation
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Then one can use the fact that long-range arbitrary field
slowly changes on the distances of the order of linear di-
mensions of the system. It means that it is possible to
remove the field from the internal integrands in Eq.(19)
and use that
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fective susceptibility of a system. Namely, using avowed
form of the function ),( RRgij ′

rr
 it can be obtained from

Eq.(25)
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where a tensor
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plays a role of effective susceptibility of the system. As it
takes after previous consideration, the value
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is a current inside an object generated by external long-
range field. It means that tensor ),( RRlm ′′′Χ

rr
 is a nonlocal

susceptibility, calculated with the account of all scattering
processes in the system.

The pole part of this tensor defines the resonances in the
system caused by multi-scattering processes into the sys-
tem. So-called configuration resonances [5] which depends
on mutual situation between different parts of a system are
described by poles of tensor  ),( RRlm ′′′Χ

rr
, too. These

resonances are depended on the dimension and shape of an
object. The condition of resonance interaction is determined
by usual manner

[ ] 0)()(det 1 =′′− − RMRW nlknkl
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The real and imaginary parts of an effective susceptibil-
ity must satisfy the Kramers-Kronig relations [17], which
express the causality principle. The real and imaginary parts
of ),( RRlm ′′′Χ

rr
 must obey, moreover, optical theorem

conditions [18-20], which express the energy conservation
law. Both these fundamental principles can be considered
as an examination requirements for effective susceptibility
calculated in the framework of determined model.

4. The separable susceptibility

There exist a special case of a nonlocal susceptibility -
factorizing susceptibility. Namely, it can be often supposed
that susceptibility of a nano-object has a form [12, 14,  21]
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Where  )(Rji
r

 and  )(Rji ′
r

 are the transition current densi-
ties between one-electron eigenstates m and n calculated at
the space points R

r
 and R′

r
, respectively. The quantities

mf  and nf  are Fermi-Dirac distribution factors giving the
probabilities that the states m and n are occupied in thermal

equilibrium [12, 21].
For simplicity used was the two-level  model suscepti-

bility of an object containing only transitions between n =
0 and m = 1 states. Then, using Eqs (22) and (23) one ob-
tains

)0(

0
)()( ljjl Rj

ia
RM γ

ωµ
′−=′
rr

,                                       (32)

and

)0(

0
)()( ljjl aNRj

ia
RW γ

ωµ
′−=′
rr

,                                    (33)

where

∫=

sV

ll RjRd )()0( rr
γ  .                                                          (34)

In according to Ref.[12], let us introduce a parameter
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then, substituting Eqs.(32)-(35) into Eq.(24), one obtains
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from Eq.(36) we can derive an expression
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At last, substitution of Eq.(38) into expression for self-
consistent field (27) gives the expression for a local field of
the system characterized by nonlocal susceptibility (30).
Namely,
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where expression in the brackets plays the role of so-called
local field factor [12], and
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As it is easily seen, Eqs (39) and (40) are  the expressions
obtained earlier  (See, e.g., Ref.[12]) with other method.

4. The system consisting of a small probe and
an object characterized by susceptibility
independent on spatial coordinates

Let us consider the system consisting of an object with linear
dimensions less then wavelength of an external field and
small probe which could be considered as a point-like par-
ticle. Let us assume that probe is small as compared with
characteristic wavelength of a field. It means that for
arbitrary long-range field the equation for reradiated field
by a probe can be written in the form  (Cf. Eq.(8))
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It means that the generalized Green function describing
the electrodynamical properties of the media in which an
object situated have to consist of two parts
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This Green function is a photon propagator describing
the propagation of photon from point R′

r
 to point R

r
 of the

system. The first term of Eq.(43) describes the direct
propagation of a photon from point R′

r
 to point R

r
. The

second term describes propagation of a photon from point
R′
r

 to point R
r

, which is re-radiated by a point-like probe
situated at point pR

r
. In the case of independent on spatial

coordinate susceptibility of an object and a small probe,
Eq.(26) can be rewritten as
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with effective susceptibility of a system
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and «incoming field» tensor
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In Eq.(45) the designation
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is used for the self-energy part. It should be emphasized
that because generalized Green function is in the integrand
of Eq.(47), self-energy part describes all scattering proc-
esses including scattering of the field between a probe and
an object.

These equations will be used  for numerical calculations
of near-field image of an object in the next part of the work.

 5. Numerical calculations

To illustrate the developed method we calculated the image
of near-field for the system consisting of rectangular dielec-
tric parallelepiped and small spherical probe. For simplic-
ity, it is supposed that  susceptibilities of an object and a

probe are  independent on spatial coordinates. It  means that
a probe is rather small for the approximation (40) to be valid.
Calculation was made for a model shown in Fig.1. It is sup-
posed that a small probe is scanned along the scanning plane.
A probe re-radiates the external field acting on the system.
Due to action of both external and re-radiated fields on the
object the currents are generated inside the object. These
currents cause radiation, which is detected as a near-field
image.  The  dependence  of  intensity  of near-field image
on a probe position in the scanning plane was calculated.
Cartesian coordinate system was chosen with origin situated
at the center of an object.

In recent years the interest to nano-technologies based
not only on solid state materials but on molecular technolo-
gies is permanently increased [22, 23]. In this connection
the problem of molecular or molecular complexes orienta-
tion at the surface becomes important. There is a big num-
ber of the papers devoted both to theoretical and experi-
mental studies of the problem of orientation of molecules
and molecular clusters at the surface [24,25]. On the other
hand, the SNOM technique allows to obtain different imag-
es of different oriented nanostructures [26]. These facts al-
lows us to propose this new method of calculation of near-
field image to problem of termining orientation of nano-
objects with respect to axes of external field polarization.
These reasons were taken into account when three types of
objects are used in the calculations: an object of the 1-st
type is characterized by dimensions 40x200x20 nm3, with a
short side along Oz axis. An object of the 2-nd type is char-
acterized by dimensions 400x200x20 nm3 , with a short side
along Oz axis. And object of the 3-d type is characterized
by dimensions 200x200x20 nm3, with a short side along Oz
axis. Radius of a probe is much less then wavelength

λ<<0r  , namely r0 = 4 nm,  λ = 800 nm. Due to these
circumstances the near-field and middle-filed parts of the

sa m p le

z

x

y

p rob e

in c iden t
f ie ld

d etec to r

Fig.1. The scheme of SNOM experiment for which the calculations  were

made in the work.
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photon propagator were used in numerical calculations [5,
12]. Namely,
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with U
t

unit dyadic, RRRd ′−=
rrr

, RRR ′−=
rr

 and RReR /
rr

= .
Since the external field supposed as monochromatic one,

dielectric constants of both probe and object were supposed
to be constant and equal to εpr = 2.25 and ε =3 respectively.

Calculated was the value, which characterizes the in-
tensity of a light forming the near-field image in far zone. It
is clear that this intensity is equal to

2
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 far-field part of the Green dyadic. Since

the distance at which the near-field image is detected,  Dr,
is much more than a linear dimension of an object, one can
write

J = 

2

0 ),(
4

RRG FF
E

rrt

−−
π

χ   

2

)(RERd

Vs

rrr
′′∫                       (50)

with R0 coordinate of the center of an object. So, due to the
distance 0RRDr

rr
−=  that is constant in the defined ex-

periment, the intensity of light which forms the near-field
image can be written as

2

)(RERdConstJ

sV

′′⋅= ∫
rrr

,                                              (51)

This value is calculated in the present work. In Eq.(51) )(RE
rr

is the self-consistent field calculated in according to Eq.(44).
In the numerical calculations the problem of divergence

of integrals at 0=′− RR
rr

 arises. For solution this problem
it is necessary to use the approach developed in the works
of  van Bladel [26] and Yaghjian [27] in which the idea of
exclusive volume was discussed. This approach consist in
the formal procedure

00
0

)(
)(),(lim)(

ωµ
ωµ

δδ i

RJL
RdRJRRGiRE

VVs

rrt
rrrrrtrr ⋅−′′⋅′−= ∫ −→

,

(52)

where L
t

 is a source dyadic which depends solely on the ge-
ometry of a «principal volume», δV , which excludes the sin-
gularity of G

t
 and becomes infinitesimally small in the limit

as its maximum chord length δ  approaches to zero [27]. The
dyadic L

t
 for a rectangular parallelepiped was calculated in

[28] and is equal to ( )zzzyyyxxx eeeeee
rrrrrr

Ω+Ω+Ω
π4

1
 with
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Fig.3. The gray scale map representation of near-field image calculations for stick-like object (80x400x20 nm3) when the distance between a scanned

plane and an object is equal to 30 nm.  (a)  - both external and detected fields are polarized along Ox axes;  (b)  - both external and detected fields are

polarized along Oy axes;  (c)  - the external field is polarized along Ox axes and detected field is polarized along Oy axes;  (d)  - the external field is

polarized along Oy axes and detected field is polarized along Ox axes.
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The near-field images were calculated for different val-
ues of distance l between a scanning plane and an object.
The main attention is paid to the influence of mutual
orientations of an object and external field polarization on
formation of near-field object image.

The first series of calculations was made for stick-like
object (the 1-type object). This model calculation can give

the notion about a possible near-field images of stick-like
polymers or molecular complexes. The results of these cal-
culations are shown in Figs 2-5. It needs to be pointed that
increasing of the distance between scanning plane and an
object leads not only to some smearing out the image and
decreasing of intensity of image. In the case of external light
polarization along a long axes of an object the near-field
image can have rather complicated structure (see, Fig.5) and
very similar to near-field image given by linear chain of a di-
poles.

a b

c d
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The results of calculations of a near-field image of rec-
tangular bulk 2-nd type object are shown in Figs 6 and 7.
The results of the same calculations for rectangular bulk
3-d type object are shown in Figs.8 and 9.  All these results
allows to hope that polarimetric measurements of near-field
images of an objects having rectangular form of an projec-
tion on the scanning plane, can give a possibility for deter-
mining orientation of an object with respective to external

field polarization direction. It needs to be emphasized that
near-field images of cross-excited fields (e.g., external field
is polarized along Ox axes and detected field is polarized
along Oy axes and vice versa) have a specific structure con-
sisting of four bright smears at the corners of an object pro-
jection on the scanning plane. This characteristic behavior
of near-field images could be observed in all calculated ex-
amples.
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-0.2 0 0.2

X , 8 00  n mx

-1.0-1.0-1.0-1.0-1.0

-0.5-0.5-0.5-0.5-0.5

00000

0.50.50.50.50.5

1.01.01.01.01.0

Y
, 

80
0 

nm
x

Y
, 

80
0 

nm
x

Y
, 

80
0 

nm
x

Y
, 

80
0 

nm
x

Y
, 

80
0 

nm
x

 0.0938  --  0.1000

 0.0875  --  0.0938

 0.0813  --  0.0875

 0.0750  --  0.0813

 0.0688  --  0.0750

 0.0625  --  0.0688

 0.0563  --  0.0625

 0.0500  --  0.0563

 0.0438  --  0.0500

 0.0375  --  0.0438

 0.03125  --  0.0375

 0.02500  --  0.03125

 0.01875  --  0.02500

 0.01250  --  0.01875

 0.00625  --  0.01250

 0  --  0.00625

c d

a b



V. Lozovski, S. Bozhevolnyi: The exact solution of self-consistent equations...

53SQO, 2(3), 1999

-0.5 0 0.5

X , 8 00  n mxX , 8 00  n mx

-1.0-1.0-1.0

-0.5-0.5-0.5

00000

0.5

1.0

Y
, 

80
0 

nm
x

 2.016  --  2.150

 1.881  --  2.016

 1.747  --  1.881

 1.612  --  1.747

 1.478  --  1.612

 1.344  --  1.478

 1.209  --  1.344

 1.075  --  1.209

 0.9406  --  1.075

 0.8062  --  0.9406

 0.6719  --  0.8062

 0.5375  --  0.6719

 0.4031  --  0.5375

 0.2687  --  0.4031

 0.1344  --  0.2687

 0  --  0.1344

-0.50 -0.25 0 0.25 0.50

X , 8 00  n mx

-0.50

-0.25

0000

0.25

0.50

Y
, 

80
0 

nm
x

 0.4594  --  0.4900

 0.4288  --  0.4594

 0.3981  --  0.4288

 0.3675  --  0.3981

 0.3369  --  0.3675

 0.3063  --  0.3369

 0.2756  --  0.3063

 0.2450  --  0.2756

 0.2144  --  0.2450

 0.1838  --  0.2144

 0.1531  --  0.1838

 0.1225  --  0.1531

 0.0919  --  0.1225

 0.0613  --  0.0919

 0.03063  --  0.0613

 0  --  0.03063

-0.5 0 0.5

X , 8 00  n mx

-1.0-1.0-1.0

-0.5-0.5-0.5

00000

0.5

1.0

Y
, 

80
0 

nm
x

 0.3094  --  0.3300

 0.2888  --  0.3094

 0.2681  --  0.2888

 0.2475  --  0.2681

 0.2269  --  0.2475

 0.2063  --  0.2269

 0.1856  --  0.2063

 0.1650  --  0.1856

 0.1444  --  0.1650

 0.1238  --  0.1444

 0.1031  --  0.1238

 0.0825  --  0.1031

 0.0619  --  0.0825

 0.0413  --  0.0619

 0.02063  --  0.0413

 0  --  0.02063

-0.5 0 0.5

X , 8 00  n mx

-1.0-1.0-1.0

-0.5-0.5-0.5

00000

0.5

1.0

Y
, 

80
0 

nm
x

 0.8906  --  0.9500

 0.8313  --  0.8906

 0.7719  --  0.8313

 0.7125  --  0.7719

 0.6531  --  0.7125

 0.5938  --  0.6531

 0.5344  --  0.5938

 0.4750  --  0.5344

 0.4156  --  0.4750

 0.3563  --  0.4156

 0.2969  --  0.3563

 0.2375  --  0.2969

 0.1781  --  0.2375

 0.1188  --  0.1781

 0.0594  --  0.1188

 0  --  0.0594

a b

c d

Fig.5. The gray scale map representation of near-field image calculations an rectangular object (200x400x20 nm3) when the distance between a scanned

plane and an object is equal to 30 nm.  (a)  - both external and detected fields are polarized along Ox axes;  (b)  - both external and detected fields are

polarized along Oy axes;  (c)  - the external field is polarized along Ox axes and detected field is polarized along Oy axes;  (d)  - the external field is

polarized along Oy axes and detected field is polarized along Ox axes.
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Fig.6. The same as in Fig.4, but calculated for distance between a scanned plane and an object l = 90nm.
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a b

c d

Fig.7. The gray scale map (a), (c) representation and 3d intencity distribution (b), (d) of near-field image of an rectangular object (200x200x20 nm3)

when the distance between a scanned plane and an object is equal to 30 nm.  (a), (b)  - both external and detected fields are polarized along Ox axes; (c),

(d)  - the external field is polarized along Oy axes and detected field is polarized along Ox axes.
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Fig.8c,d. The same as in Fig.6, but calculated for a distance between a scanned plane and an object l = 90 nm.
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