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Resonance generation of sum harmonic
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Abstract. Using the group theory considerations, we investigate the nonlinear effect tensor (NET) for a
crystal in a static electric field when a harmonic or the initial emission frequency approaches that of the
excitonic absorption band. The dependence of additional terms in NET (resulting from the electric field
applied) on the electric field components is found. Their form is shown to differ from that of usual NET.
The results obtained are illustrated by considering the case of the D, crystal symmetry.
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1. Introduction some emission polarization, the harmonic generation is due
to the field action only.

The sum harmonic generation is among the nonlinear opti- 1h€ tenson(E) was found in the first order of the per-
cal effects in crystals. It involves emission at a sum fréurbation theory, so in general case the intensity of the sum

quency,wy(ky) + wy(ky), due to emission at frequenciesh@rmonic generation due to it has to be much less than that

wi(kq) and wy(k»). The well -known frequency doubling, due to_the tensar. The tensqa(E), however, has resonance

i.e. the second harmonic generation, is a special case of {§@éns in denominators. This means that, when an emission

above effect. frequency approaches the resonance, the effect of an elec-
When theoretically investigating the sum harmonic gedtic field is to grow abruptly. Hence it follows that in the

eration, it is convenient to use the nonlinear effect tensé®se of the resonance it is of both interest and importance to

(NET) a. NET is a factor in the expression for the matri¥tudy the structure of the tenst() and its transformation

element corresponding to an elementary act of the abd¥koperties. The same is also true for the depend_ence of the

process. The generation intensity is proportional to the NE§Nsora(E) form on the symmetry type of the exciton state

modulus squared. whose frequency is resonant. It is the above problems the
The NETa form was determined in the paper [1] usingrésent paper deals with.

the polariton theory. The latter takes into account the

retardation of interaction. This enables one to correctB. Results and discussion

analyze resonance phenomena that occur when an emission

frequency approaches the excitonic absorption band fre- | et us give, first of all, the explicit form of the tensor

quency. The NET form in crystals of various symmetrieg(g). According to the paper [2], it is a product of the vec-

was also investigated in the above paper. tor E and a tensoB of rank four:
Using the technique developed in the paper [1], one of
the authors of the present paper has found the NET fommy;, ;, (E) = z Ei Biiyioi. (1)
i

for crystals in a static electric fiel [2]. It was shown that
the effect of the electric field results in appearance of an
additional terma(E) in the NETa. The form of this addi-
tional term,a(E), differs from that ofr. This means that, at

The tensor3 has 16 rather complicated components.
For the following analysis it will be sufficient to give ex-
plicitly only one of them:
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HereN is the number of crystal unit cellg;(k), |u k) are, There is no summation ovgrhere, and hence the quantity

respectively, the energy and wave function of a Coulomb
exciton with wave vectok that belongs tehe p-th band; kg +Kko) (1, kg +K | .
[0) is the wave function for the ground state of the cryjstal; [Eu (kq+ko) —7i(coy + wz)]
j1, J2 iIndex the projections of polarization vectors for the
harmonic and initial emission (they may take the vatgs  is not of full symmetry. This means that the term given in
2); pi(i =x Y, 2) is thei-th component of the electric dipole an explicit form in (4) is isomorphic not tg{,i), but to
moment for a unit cellzh, Kqljn| 4z, k2) is the matrix element the product jpij ) ()i where indexu signifies projection
e , onto the irreducible representation to which fhg k; +
of the operator/, (wheree, m, | are, respectively, the | ) siate belongs. An analysis made for the rest of terms in

electron charge, mass and momentum operator). The otffr (denoted by dots) shows that tengé is isomorphic

terms in expression (2) differ from the above one by tH€ the following sum:

place of the matrix element for the compongnand the

differences (sums) in the denominators. The frequengies [3(/”). =~ (D) + @) g iz g (5)
. : . - dl)2l

andw, can be considered as interchangeable, i.e., the rlghﬂ

hand side of expression (2) is symmetric about intercha

ing the indices 1 and 2.

The form of the tensam(E) depends on that of the ten-
sor 8. When determining the latter form, one has to keep in Identifying the indexu with designation of the corre-
mind that the exciton statgs, k) are classified according sponding irreducible representation, one can determine the
to the irreducible representations of the point group of crystlctors in the right-hand side of expression (5) and obtain

ng: . . .
ther summing oveyp one gets the relation (3) (as it was to
be expected).

symmetry, while the expressions of the type first the tenso¥) and then the tensar*)(E):
(1) - . p(H)
K)ok i ® = 2 BFj (6)

ZE K)+hw
# Eu(k) After summing the corresponding tensaf)(E)

transform according to the entire symmetry representatiob@mponents over all the irreducible representations, one can
[2]. So it follows from expression (2) that the tengas ~ get the tensoa(E). Its form is to be the same as that fol-
isomorphic to j{1j,i)o: lowing from expression (3).
Now let us return to the resonance conditions when

3 (wr+ @)~ Ey(Ky+ k). In this case the terms B¥) with

U = iy will prevail. As a result, the componemt$)(E) of
Here index 0 means that the product of coordingjtgg, the tensora(E) will prevail. Thus under resonance
is projected onto the entire symmetry representation of tenditions one can write down:
point symmetry group. Basing on expression (3), the form
of the tensora(E) was determined in the paper [2] for B= ZB(M) = Zﬁ(ul) +ﬁ(“)1
crystals of various symmetries. H HEp

Now let us consider the form of the tensdE) when  g(E) = )3 alm) (E)= > G (E)+ q¥ (E).

the sum frequencyy, + w,, approaches the excitonic band m et
absorption frequency, &1E,(ki+ k). (The caseh (w+

w5) = E(ki+ ko) is, however, excluded. Such a two-photon According to the above considerations, the non-
absorption will be considered elsewhere.) resonance components may be neglected and therefore

First of all, it should be noted that generally the term%(E): a(E). Th|s_me_ans that l&gder resonance conditions
with different iy make different contributions to different "€ tensou_(E) retains its formz_x .(E)’ howe\_/er, hecome .
components of tens@ depending on thigr, k, +k») state the governing components. Similar reasoning was used in
symmetry. To demonstrate this, let us separate out th er [3] to a”"?".yze the Raman scattering tensor under
terms in expression (2) for whigh = L& resonance conditions.
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To illustrate the above results, let us consider a crystll the other components are zero.
of D,y symmetry. For it the usual NET has the following The same procedure can be used to find the teff8¢f)
NoN-Zero COMpPoNentsl,y, = Oy, = Oyx, = Oy Ozxy =02y, COMponents for other irreducible representations obthe
In a static electric field the tensa(E) appears whose form group. The corresponding results are given in Table 2. (There
follows from expression (3). It is given in Table 2 - see th#he numbers 1, 2, ... are used instead,p#,, ..., and the
row designated byz . relations between components correspond to the only

m representation.)

After performing summation of the corresponding
components over all the irreducible representations, one can
obtain the tensor form in the case when there is no resonance

Let us determine the tensaf)(E). TheD,ygroup has
four one-dimensional @) irreducible representationdy,
Ay, By, By, and a B irreducible representatiok, with two
rows, E¥ andEWY), after which the coordinates y trans-
form.

Using expression (5), one can find the form of the ten- Now let us consider the case when the frequency
sor M. To this end one has to determine the irreducib®pproaches the frequency of the excitonic absorption band.
representations of thi&,q group after which the coordinatesOne can show that an isomorphism at the initial emission
X, y, z, as well as their double and triple products, trandrequency follows from expression (2):
form. The corresponding technique is discussed in the pa-
pers [3,4]. The results of our calculations are given in Table 13

Let us consider the cage= Ay, i.e. the wave function of
the intermediate statdyy, ki+ky), corresponds to the If 4 =A,, then, basing on expressions (9) and (1) and Table
irreducible representatigk. One can conclude from Table 11, we get:
that projections of coordinatgsy, zonto the representation

(it is given in the row designated wif} ).
I

(1K)

injoi — U2Dping +G2) i) - ©)

A, are zero. Therefore, the first term in the right-hand side 6f2’ (E) = & Ey, a{ (E) =-aE,,
expression (5) drops out. For the second term the non-zero, A
projections of double products angXg)a1 = (Y1¥2)ar and a§,X§)(E) =gEy, a)((yg)(E) =-yE, . (10)

(z120)a1- Thus, according to expression (5), the non-zero

components of the tenspfu) are the following: All the other components are zero. S
The form of the tensoa(E) in this case is given in

Table 3. This tensor is non-symmetric in respect to the indi-
cesjy, jo, because there is no symmetry now between the
frequenciesuy, andwy: w; is the resonance frequency, while
is not.

When the resonance occurs at a frequengythen

(A1) =B(Pg|_) =B§/§(§L(Z( =¥ (A1) =ay,

XXXX XXyYy 7272727

(A1) = B(A) = ag,

XXZzZ yyzz
Thereafter, using (6), one can determine the form of {2

tensora “ (E):

(h) = gA) — o, (7)

zzXX ~ Pzzyy

one has to interchange the componm?]-'é)- anda (¥,
12 2h

(A1) (Y = (A (E) = (A1) -
oo (E) = aBy. ayyy (B) = @By, a7’ (E) = a2E,, in Table 3. If frequency is doubled)= w, = «), then one

has to taker (). =g (¥

afR(E) =aiEy,a{(y (B) = aiE,a ) (B) = g, G =g .

ag%/)(E) = a3EZ,a)((§fZL)(E) =auEy ,Gg,';%)(E) =ayEy . (8)

Table 1. Coordinates and their products that transform according to the irreducible representations of the D;; group.

u Coordinates and their products
A X1X2 + Y1y 47 X1Y2Z3 + Y1XoZ3 X1ZYst Y12oX3 4 Xo¥3t Z1YoX3
A X1Y2 - Y1Xo X1XoZ3 - Y1Y2Z3 X12oX3 - Y1245Y3 Z1XoX3 - 21Y2Y3
B1 X1 Xo- Y1y X1Y2Z3 - Y1XoZ3 X125Y3 - Y12oX3 Z1X3Y3 - Z1YoX3
B> z 47573 X1XoZ3 + Y1YoZ3 X1ZoX3+ Y1ZoY3 L1 XoX3 t Z1Y5Y3
EY X | Y1z Zy, X1XoX3 YiYoX3 Y1XoYs X1Y2Y3 475X3 Z1XoZ3 X1227Z3
EY Yy | X% 1% Y1Y2Ys X1X2Y3 X1YoX3 Y1XoX3 423 Z1Y2Z3 Y1573
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Table 2. Form of the tensor a)(E) for the resonance frequency w; +w,.

Jlal2
u XXX yyy 777 XXz XZX ZXX zzy zyz yzg
XXy XyX YXX yyz yzy zyy Xyz xXzy ZXY
YYyX YXy Xyy ZzX ZXZ Xzz YXz yzX zy
1E, 1E, 2E, 0 0 F, 0 0 4E,
A 0 0 1E, 0 0 &, 0 0 0
0 0 1E, 0 0 4E, 0 0 0
0 0 4, 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1E, 1E, 0 0 0 0 0 0 0
B, 0 0 -1E, 0 0 0 0 0 0
0 0 -1E, 0 0 0 0 0 0
0 0 1E, 0 0 3, 4E, 4E, 0
B, 2E, 2E, 0 0 0 F, 0 0 0
2E, 2E, 0 4E, 4E, 0 0 0 0
1E, 0 0 4E, 4E, 0 7E, 7E, 0
E® 2E, 2E, 0 5E, 5E, 0 0 0 0
0 0 xE, 0 0 6E, 0 0 0
0 1E, 0 4E, 4E, 0 0 0 =
E® 0 0 X, 5E, 5E, 0 0 0 0
3E, 3E, 0 6E, 6E, 0 0 0 0
1E, 2E, 3E, 8E, 8E, 9E, 14E, 14E, 15E,
Z 4E, 4E, 5E, 10E, 10E, 11E, 0 0 0
4 6E, 6E, 7E, 12E, 12E, 13E, 0 0 0
Table 3. Form of the tensor O!(“)(E) for the resonance frequency .
H Jid2
XXX yyy 777 XXz XZX ZXX zzy zyz yzg
XXy XyX YXX yyz yzy zyy Xyz xXzy ZXY
YYyX YXy Xyy ZzX ZXZ XZZ yXz yzX zy
1E, 1E, 2E, 0 3E, 0 0 0 0
A 0 1E, 0 0 FE, 0 0 0 0
0 1E, 0 0 4E, 0 0 0 0
0 0 0 0 0 0 0 0 0
A 1E, 0 -1E, 0 0 0 0 0 0
1E, 0 -1E, 0 0 0 0 0 0
1E, 1E, 0 0 0 0 0 0 0
B, 0 -1E, 0 0 0 0 0 0 0
0 -1E, 0 0 0 0 0 0 0
0 0 1E, 0 3E, 0 4E, 0 5E,
B, 2E, 0 0 0 F, 0 0 0 0
2E, 0 0 4E, 0 5E, 0 0 0
1E, 0 0 5, 0 6E, 10E, 0 11E,
EX 2E, 0 3E, 7E, 0 8E, 0 0 0
0 4E, 0 0 %E, 0 0 0 0
0 1E, 0 5E, 0 6E, 0 11E, 0
EV 0 2E, 0 7E, 0 8E, 0 0 0
3E, 0 4E, 9E, 0 10E, 0 0 0
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