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New method of apertured electromagnetic field modeling
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Abstract. Using a new wave treatment of rigorous Sommerfield’s solution for a problem of plane wave
diffraction on a perfectly conductive half-plane, it was obtained the solution for a problem of plane
wave diffraction on a slit and rectangular aperture. The result of aperture diffraction was represented
as a sum of elementary rectangular unit cell waves. New integral approach to modeling of plane wave
diffraction on an arbitrary two-dimensional aperture is discussed. Proposed method is very useful for
providing numerical modeling of diffraction phenomena.
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1. Introduction

The development of optics, optical engineering and optical
measurements determines the necessity to provide more
exact modeling of diffraction effects, because of the tradi-
tional methods of their description appear to be unsatisfac-
tory. In this connection, the results of further development
of the approach that based on new wave interpretation of a
rigorous Sommerfield’s solution are represented. A new treat-
ment of the well-known Sommerfeld’s solution [1, 2] of the
problem of plane-wave diffraction from a perfectly conduct-
ing half-plane is good proofground for further more deep
investigation of diffraction field and can be generalized on
cases of apertured electromagnetic wave diffraction.

As it was shown in our previous papers [3], in both
theory and experiment, the diffraction field can represented
as a superposition of real physically existing waves can
propagate in free space separately with self-similar features,
in contrast to geometrical and boundary waves postulated
in traditional representation. The introduced singular wave
component —edge dislocation wave (EDW), was described
by the complex Fresnel integral and possess the main nu-
merical information about diffraction process.
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The aim of this work is an attempt to generalize the new
approach to more complex apertures, in particular, to the slit
and rectangular ones. Also, it was consider the develop-
ment of the original method of field modeling, which was
formed using plane wave diffraction on a two-dimensional
aperture.

2. EDW as «eigenmode» for diffraction field
representation

a. New decomposition of plane wave diffraction
on two orthogonal half-planes.

Peculiarity of the EDW is a scale-invariant space behavior
regarding the U parameter and the edge dislocation that
presents on the boundary of geometrical shadow. Thisis a
reason for naming this wave as Edge Dislocation Wave.
Symmetrical structure and the analytical form in whole space
allow to treat EDW as a basic function for diffraction field
representation. It is well-known that the arbitrary wave was
represented as an angular spectrum of plane waves. This
allows to use the solution of model problem of plane wave
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diffraction for constructing the solution of the problem of
arbitrary beam diffraction. The beam, in particular, the Her-
mit-Gaussian one, diffraction on a half-plane was consid-
ered in [4], where it was shown that, in the problem of dif-
fraction, the edge dislocation wave plays the role of an
«eigenmode» like that of the plane wave in free space.
Due to this, the solving of the mentioned problem is re-
duced to calculation of convolution of a source beam
angle spectrum and introduced edge dislocation wave that
composed the singular component of diffraction beam.
Next step toward description of diffraction on two-di-
mensional aperture consists of consideration of plane wave
diffraction on a rectangular aperture. From the very begin-
ning, we consider a rectangular sector that is composed of
two orthogonal half-planes. Let a plane wave E propa-
gates along Z-axes and is incident normally on a sector
plane, the sides of which were oriented along X- and Y-axes
(Fig. 1). This process can be imagined that as a result of two
sequential acts of diffraction on each of half-planes. In this
case, the second half-plane was illuminated by E,; wave
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the well-known Fresnel integral in the conr?plex form. The
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parameter U for normal incidence can be written as

u =i\/E\Nx2 +72 — 7, the sign «» is used for x <0, z

> 0, k is a wave-vector. Because of the angular spectrum
F(k) of the wave, that is not incident on the second half-
plane, was represented as delta-function on y-coordinate,
the resulting diffraction field is reduced to the product of
a transmission function of two orthogonal half-planes:
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Fig. 1. Scheme of diffraction on orthogonal half-planes.

384

where U _+‘/_" y +72-z.In Eq. (1), the mirror

reflected component was omitted, which corresponds to
a solution for a “black” screen that is an essentially sca-
lar problem.

b. Plane wave diffraction on a rectangular
aperture

The field of plane wave diffraction on a slit in perfectly
conductive plane can be written in the form [8]:

gdt =g, L 'Iexp( 2y @

whereaisahalf-widthofaslit, U, = +vk ‘/,/(x- af+z2-z,
U,= i\/E‘/\/ (X+ a)2 +2% -z, sign “+”is used for x—a >

0 (x + a>0) and otherwise. This result can be easily gener-
alized on arbitrary angle of plane wave incidence [1, 8]. Exp.
(2) explains the two EDWs that were born on each side of a
slit. Using the Exp. (2) we obtain the resulting field for plane
wave diffraction on a rectangular aperture 2a%x2b centered
on the origin of coordinates (Fig. 2). The diffraction field £
we explain using transmittance W that was product on ini-
tial plane wave Eyy. E = WXE,.

Using the expression (2) for slit diffraction field we ob-
tain the expression for plane wave diffraction on a rectan-
gular aperture. Thus, the coefficient #/ can be expressed
via orthogonal EDW-functions f, and £, which are born on
each side of the rectangular:

W——{f( x(x—a))- f (U (x+a)}
{10, -)- 10, () G)

In a scalar non-paraxial diffraction theory, i.e. with-
out «evanescent» wave [2], the result of diffraction of a
plane wave on a rectangular aperture was written as a
product of transmittance of two cross-orthogonal slits.

2a

Fig. 2. Scheme of a diffraction on a rectangular aperture.
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c. Diffraction on a linear element

Now we consider the diffraction on a half-slit (Fig. 3),
which can be treated as a limit case of the rectangular
aperture:

i D

E= EOX— Hx

*éf@f%v-%%fﬁf@%% ®

This allows us to find the field that was produced by
the boundary linear element d/. Taking the limit in (4)
and subtracting the part of the field that correspond to
the slit (dotted line at x > 0 on Fig. 3) we obtain that:

wl =L expfu 2) 2 o 1E:u 5)

m ayD

The experimental distribution of intensity of the field
diffracted on half-and-squared cell was shown in Fig. 4.
Single mode linearly polarized He-Ne laser radiation
was used to produce the nearly plane wave beam, and the
diffraction field was registered using CCD camera. We
see the approach to spherical symmetrical form of distri-
bution during with decreasing the cell size. The structure

v A

dl

Fig. 3. Schematically view of the creation of boundary element d/.

peculiarity was visualized using subtraction of the plane
wave with amplitude that was twice less than the incident
wave.

3. New scalar solution for problem of a plane
wave diffraction on a two-dimensional aperture

a. Plane wave diffraction on a composed
aperture

Further we consider the plane wave diffraction on the
aperture that composed of rectangular cells. In simple
case of two rectangular cells A and B (Fig. 5) with one
contiguous side, the diffraction field can be expressed as:

Fig. 4. The experimental frames of intensity distribution demonstrate the structure of elementary diffraction wave for half-slit and squared
cell under the decreasing of its size. The structure detail is visualized by subtracting the incident plane wave with half-amplitude. Frame size

is 4.8%3.2 mm.
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Fig. 5. The compensation of EDW oscillations from contiguous
sides of rectangular cells.

ZWn = (X=X ) - Yp)+

+(X2 = X3)M - Y2) = (X1 - X3)(1 - YV2), (6)

where X;and Y; are EDW-functions, correspond the sides
that were shown in Fig. 5. L.e. the inner EDW (in this
case X5) does not take a part in the field construction.
This peculiarity remains for more complex apertures that
were composed of rectangular cells.

In contradiction to another method of the wave equa-
tion solution, the proposed integral representation of dif-
fracted field was based on obtained solution of the problem
of plane wave diffraction on rectangular aperture and slit.
Thus, using the unit rectangular cell representation of two-
dimensional aperture, we obtain the diffraction field in the
form:

E=E,x ZWn )

It is easy to see that the EDW-function of inner unit
cell doesn’t take part in field construction. This peculiar-
ity of introduced rectangular unit cell — inter-destruction
of field oscillation from jointed inside is sufficient de-
crease the needed number of elementary cell in (7). This
allows sufficiently decrease the time of computer modeling
without losses of accuracy. The Fig. 6 shows the example
of adaptive unit cell representation of aperture.

b. Arbitrary aperture

No doubt that the Exp. (7) is useful for apertures with stepped
boundary, and so it is need to reduce the step for more pre-
cisely approximation of curvilinear apertures. Using the
local coordinates, we can to easily obtain the expression for
the case of the arbitrary angle of a plane wave incidence on
two-dimensional apertures. All of W-waves is cophasal and
differ from each other by only initial points.

Let’s consider one of multipliers in Eq. (3) in more
detail, using the Fresnel integral:

AW, =%§[:exp6u2)du - fexp@uz)jugz

U
=17‘/—7'Tuj’zexp6u2)du ®)
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where U; and U, are the coordinates of the observation
point P. When the size of cell is decreased, we suppose
that U, = U; + AU and the difference of two Fresnel inte-
grals can be written in the form:

AW, = 17‘/% g tf;xpﬁuz)iu —i'expﬁuz)duéz
. U+AU

ek
U

Although the AU depends on coordinates of the obser-
vation point and width of cell, it is necessary to use only
the fact that AU trends to zero when the slit width does the
same. This allows writing a limit for Exp. (9) in the form:

lim_aw, =221 20U expfu?)

AU -0 Jor

In the limit case, when the size of unit cell trends to zero,
we obtain the expression for secondary wave W (Unit Cell
Wave), which is illuminated by elementary cell ds = dédn,
where £ and n are coordinates on a screen plane (Fig. 7):

(10)

E=EqxW= on'—muxmuyﬁxp{iuf+iU3} (11)
m

o ou .
Taking into account that AU = ™ dx , the expression
X

(7) can be written in the following integral form:

E(xy,2)=Eqg XJ'J'\Nds =

| 0Ug U,
= Eox [ 5gg eV U7
x exp(-ikz)d&dn, (12)
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Fig. 6. Adaptive rectangular unit cell representation of two-dimen-
sional aperture.
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Fig. 7. Coordinate system in screen plane for simplifying the
exp. (12).

where Uz and Uy, are dimensionless curvilinear quasi-para-

bolic coordinates: Ug :i\/E\/‘/(x—E)z +722 -7,
U, :i\/E‘/\/ (y—n)2 +2° -z and the sign “+” is used for

x—&>0(y—n>0)and vice versa. In paraxial approxima-
tions, the Exp. (12) is transformed into the well-known
Rayleigh-Sommerfeld solution for two-dimensional prob-
lems with Dirichlet conditions and Kirchhoff’s approxima-
tion and also clearly illustrate the Huygens-Fresnel princi-
ple[1,5,9,10].

The expression (12) gives us the non-paraxial scalar
solution of the problem of plane wave diffraction on a per-
fectly conductive arbitrary two-dimensional screen. This
expression is useful for analytical and numerical calcula-
tions. It should also be stated that the integral representa-
tion (12) describes not only forward-propagating compo-
nent but also mirror-reflecting component of diffracted field
with accounting the full field [2, 3] representation of the
model problem.

It is surprising that the partial derivation

w_ [l s
o or 20 in Exp. (8) coincides with the elemen-

tary solution of the two-dimensional Helmholtz equation
[1, 5]. Itis wonder that the Exp. (12) is still right in free space
without screen. That is an argument to propound a ques-
tion that an arbitrary wave can expand into W-representa-
tion for describing the light beam propagation in free space.

c. Simplifying the field expression

Due to a specific form of the convolution kernel, the ap-
erture integral (12) can be reduced to multiple one and,
moreover, to a simple expression using the symmetry of
the considered problem. This specificity allows obtain-
ing the solution in an analytical form for some cases. Let
the aperture is given by continuous functions 11(§) and

(&) (Fig. 7), then:
SQO0, 4(4), 2001
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Only outside n-EDW is included into field expres-
sions for vertical strip. This allows further simplification
and the Exp. (6) can be rewritten using the adaptive like
«wavelet» kernel:

. & U
E:I—JdEE(EXpGUEZ) £ x
T
1

0¢

x [EDW, (7 -1 (€)) - EDW, (7 -y €)] (14)

In some cases the Exp. (14) is more useful for analyti-
cal and numerical calculations then (12). This approach
was used for modeling of the diffraction phenomena and
studying the creation of optical vortices under diffrac-
tion on an elliptical aperture as well as the transforma-
tion of hidden dislocation trajectory under smooth defor-
mation of aperture from the circular to elliptical one [7].
If an arbitrary aperture is defined by contour I', the dif-
fraction field can be expressed as a contour integral by
using the boundary element (5):

E:fz—;expﬁuf)a‘?—rftemﬁuﬁ)zuinm +G., (19

where the diffraction field was represented traditionally
[6] as sum of geometrical G and boundary waves, (n,T) is
a normal and tangent to curve element d/ of aperture
boundary I' (Fig. 7). Based on (15) it is more useful to
consider the plane wave diffraction on the elliptical ap-
erture in detail using the polar coordinates (o, @).

Summary

The new method of solution of the problem of plane wave
diffraction on two-dimensional perfectly conductive aper-
ture is considered. It is shown that the diffracted field can
be represented via orthogonal EDW-functions, that play
the role of eigenmodes like those of plane waves in free
space. Developed on the base of proposed integral repre-
sentation the effective algorithm is very useful for compu-
ter modeling the aperture diffracted field and allows elicit-
ing features of spatial behavior. The totality of experimental
results substantiated the theoretical conclusions. It was
shown the possibility of sufficient decreasing the amount
of numerical calculations without loss of generalities.

The solution for the problem of plane wave diffraction
on orthogonal half-planes was obtained. This result was
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generalized on plane wave diffraction on an arbitrary
two-dimensional aperture. It was shown that the total dif-
fraction field is a sum of elementary waves from rectan-
gular cells that composed the aperture. The fields that
correspond to contiguous sides of the rectangular cell
have a phase shift equal to 77 The peculiarity of this ap-
proach results in a destructive interference between am-
plitude oscillations of fields in inner cells of aperture. It
was shown that only outside cells take part in forming the
diffraction field, and this fact can be treated as a way for
jumping from aperture integral to the contour one. The
specific form of the convolution kernel that describes the
diffraction allows another alternative reconstruction pro-
cedure of a diffraction pattern.

On the basis of integral representation developed was
the efficient algorithm for diffraction phenomena
modeling, and computer simulation was performed using
the properties of mutual compensation of cells joined in-
side. Also, it was mentioned that the new representation
allows considering the size of elementary cells in compu-
ter modeling. Application of the new procedure to prac-
tical diffraction-related phenomena, like plane wave dif-
fraction on a wire-frame elliptical aperture, improves the
processing efficiency without creating any associated
artifacts on the field pattern.
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