Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (1) P. 001-008 (2006).
DOI: https://doi.org/10.15407/spqeo9.01.001


References

1. M.A. Lampert, Mobile and immobile effectivemass-particle complexes in nonmetallic solids // Phys. Rev. Lett. 1 (12), p. 450-453 (1958).
https://doi.org/10.1103/PhysRevLett.1.450
2. T. Kawabata, K. Muro, S. Narita, Observation of cyclotron resonance absorptions due to excitonic ion and excitonic molecule ion in silicon // Solid State Communs 23 (4), p. 267-720 (1977).
https://doi.org/10.1016/0038-1098(77)90456-2
3. G.A. Thomas and T.M. Rice, Trions, molecules and excitons above the Mott density in Ge // Solid State Communs 23 (6), p. 359-363 (1977).
https://doi.org/10.1016/0038-1098(77)90232-0
4. R.L. Greene, K.K. Bajaj, Binding energies of Wannier excitons in GaAs/Ga1−xAlxAs quantum well structures // Solid State Communs 45 (9), p. 831-835 (1983).
https://doi.org/10.1016/0038-1098(83)90810-4
5. B. Gerlach, J. Wusthoff, M.O. Dzero, M.A. Smondyrev, Exciton binding energy in a quantum well // Phys. Rev. B58 (16), p. 10568-10577 (1998).
https://doi.org/10.1103/PhysRevB.58.10568
6. F. Rossi, G. Goldoni, O. Mauritz, E. Molinari, Theory of excitonic confinement in semiconductor quantum wires // J. Physics: Condens. Matt. 11 (31), p. 5969-5988 (1999).
https://doi.org/10.1088/0953-8984/11/31/306
7. E. Cho, M.A. Green, J. Xia, R. Corkish, P. Reece, M. Gal, Clear quantum-confined luminescence from crystalline Silicon/SiO2 single quantum wells // Appl. Phys. Lett. 84 (13), p. 2286-2288 (2004).
https://doi.org/10.1063/1.1691489
8. M.G. Lisachenko, E.A. Konstantinova, P.K. Kashkarov, V.Yu. Timoshenko, Dielectric effect in silicon quantum wires // Phys. status solidi (a) 182 (1), p. 297-299 (2000).
https://doi.org/10.1002/1521-396X(200011)182:1<297::AID-PSSA297>3.0.CO;2-4
9. Yu.V. Kryuchenko, A.V. Sachenko, Quantum efficiency of exciton luminescence in lowdimensional structures with indirect energy gap // Physica E 14, p. 299-312 (2002).
https://doi.org/10.1016/S1386-9477(01)00236-3
10. G. Finkelstein, H. Shtrikman, I. Bar-Joseph, Negatively and positively charged excitons in GaAs/AlxGa1-xAs quantum wells // Phys. Rev. B53 (4), p. R1709-R1712 (1996).
https://doi.org/10.1103/PhysRevB.53.R1709
11. A. Esser, E. Runge, R. Zimmerman, W. Langbein, Electron and hole trions in wide GaAs quantum wells // Phys. status solidi (b) 221 (1), p. 281-286 (2000).
https://doi.org/10.1002/1521-3951(200009)221:1<281::AID-PSSB281>3.0.CO;2-U
12. A.V. Filinov, C. Riva, F.M. Peeters, Yu.E. Lozovik, M. Bonitz, Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs-based quantum wells // Phys. Rev. B70, p. 035323-1-035323-13 (2004).
https://doi.org/10.1103/PhysRevB.70.035323
13. J.J. Palacios, D. Yoshioka, A.H. MacDonald, Longlived charged multiple-exciton complexes in strong magnetic fields // Phys. Rev. B54 (4), p. R2296- R2299 (1996).
https://doi.org/10.1103/PhysRevB.54.R2296
14. P. Kossacki, J. Cibert, D. Ferrand, Y. Merle d'Aubigné, A. Arnoult, A. Wasiela, S. Tatarenko, J.A. Gaj, Neutral and positively charged excitons: A magneto-optical study of a p-doped Cd1-xMnxTe quantum well // Phys. Rev. B60 (23), p.16018- 16026 (1999).
https://doi.org/10.1103/PhysRevB.60.16018
15. A. Esser, E. Runge, R. Zimmermann, Photoluminiscence and radiative lifetime of trions in GaAs quantum wells // Phys. Rev. B62 (12), p. 8232-8239 (2000).
https://doi.org/10.1103/PhysRevB.62.8232
16. Israel Bar-Joseph, Trions in GaAs quantum wells // Semicond. Sci. Technol. 20, R29-R39 (2005).
https://doi.org/10.1088/0268-1242/20/6/R01
17. W. Ossau, D.R. Yakovlev, C.Y. Hu, V.P. Kochereshko, G. V. Astakhov, R.A. Suris, P.C.M. Christianen, J.C. Maan, Exciton-electron interaction in quantum wells with a two dimensional electron gas of low density // Phys. Solid State 44, p. 751-756 (2002).
https://doi.org/10.1134/1.1130863
18. A. Esser, R. Zimmerman R, E. Runge, Theory of trion spectra in semiconductor nanostructures // Phys. status solidi (b) 227, p. 317-330 (2001).
https://doi.org/10.1002/1521-3951(200110)227:2<317::AID-PSSB317>3.0.CO;2-S
19. R.A. Sergeev, R.A. Suris, The X+ trion in a system with spatial separation of the charge carriers // Semiconductors 37 (10), p. 1205-1210 (2003).
https://doi.org/10.1134/1.1619518
20. B. Stébé and A. Ainane, Ground state energy and optical absorption of excitonic trions in two dimensional semiconductors // Superlattices Microstruct. 5 (4), p. 545-548 (1989).
https://doi.org/10.1016/0749-6036(89)90382-0
21. K. Kheng, R.T. Cox, Merle Y. d'Aubigné, Franck Bassani, K. Saminadayar, and S. Tatarenko, Observation of negatively charged excitons X- in semiconductor quantum wells // Phys. Rev. Lett. 71 (11), p. 1752-1755 (1993).
https://doi.org/10.1103/PhysRevLett.71.1752
22. R.J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M. Garcia, W. Schoenfeld, P.M. Petroff, Optical emission from a chargetunable quantum ring // Nature (London) 405, p. 926-929 (2000).
https://doi.org/10.1038/35016030
23. A.S. Bracker, E.A. Stinaff, D. Gammon, M.E. Ware, J.G. Tischler, D. Park, D. Gershoni, A.V. Filinov, M. Bonitz, F. Peeters, C. Riva, Binding energies of positive and negative trions: From quantum wells to quantum dots // Phys. Rev. B 72 (3), p.035332-1- 035332-6 (2005).
https://doi.org/10.1103/PhysRevB.72.035332
24. L.V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films // JETP Lett. 29, p. 658-661 (1979).
25. V.S. Babichenko, L.V. Keldysh, A.P. Silin, Coulomb interaction in thin semiconductor and semimetal wires // Soviet Phys.- Solid State 22, p. 723-729 (1980).
26. A. Orlandi, R. Rontani, G. Goldoni, F. Manghi, E. Molinari, Single-electron charging in quantum dots whis large dielectric mismach // Phys. Rev. B63, p. 045310-045316 (2001).
https://doi.org/10.1103/PhysRevB.63.045310
27. V.A. Fonoberov and E.P. Pokatilov, A.A. Balandin, Exciton states and optical transitions in colloidal CdS quantum dots: Shape and dielectric mismatch effects // Phys. Rev. B66, p. 085310-1 - 085310-12 (2002).
https://doi.org/10.1103/PhysRevB.66.085310
28. D.V. Korbutyak, Yu.V. Kryuchenko, A.V. Sachenko, I.M. Kupchak, Characteristics of confined excitons in silicon quantum wires // Semiconductor Physics, Quantum Electronics & Optoelectronics 6 (2), p. 172-182 (2003).
29. J.D. Jackson, Classical electrodynamics. John Wiley & Sons Inc., New York - London (1962).
30. B.I Boichuk, P.Yu. Kubay, I.V. Bilynskii, Influence of the image potential on the energy spectrum of electron in complex spherical microcrystal CdS/βHgS/H2O // J. Phys. Studies 3(2), p. 187-191 (1999) (in Ukrainian).
31. J.R. Trail, M.D. Towler, and R.J. Needs, Unrestricted Hartree-Fock theory of Wigner crystals // Phys. Rev. B68, p. 045107-045112 (2003).
https://doi.org/10.1103/PhysRevB.68.045107
32. C. Yannouleas and U. Landman, Spontaneous symmetry breaking in single and molecular quantum dots // Phys. Rev. Lett. 82 (26), p. 5325- 5328 (1999).
https://doi.org/10.1103/PhysRevLett.82.5325