Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (1) P. 043-054 (2006).
DOI:
https://doi.org/10.15407/spqeo9.01.043
References
1. D. Flandre, S. Adriaensen, A. Akheyar, A. Crahay, L. Demeus et al., Fully depleted SOI CMOS technology for heterogeneous micropower, hightemperature or RF Microsystems // Solid State Electron. 45(4) p. 541-549 (2001). https://doi.org/10.1016/S0038-1101(01)00084-3 | | 2. B. Iñiguez, B. Gentinne, V. Dessard, D. Flandre, A physically-based C∞ -continuous model for accumulation-mode SOI pMOSFET's // IEEE Trans. Electron. Devices 46(12), p. 2295-2303 (1999). https://doi.org/10.1109/16.808063 | | 3. B. Iñiguez, L. F. Ferreira, B. Gentinne, D. Flandre, A physically-based C∞ -continuous fully-depleted SOI MOSFET model for analog applications // IEEE Trans. Electron. Devices 43(10), p. 568-575 (1996). https://doi.org/10.1109/16.485539 | | 4. B. Gentinne, D. Flandre, J.-P. Colinge, F. van de Wiele, Measurement and twodimensional simulation of thin-film SOI MOSFETs: Intrinsic gate capacitances at elevated temperatures, // Solid-State Electron. 39(11), p. 1613-1619 (1996). https://doi.org/10.1016/0038-1101(96)00067-6 | | 5. A. L. P. Rotondaro, U. K. Magnusson, C. Clayes, D. Flandre, A. Terao, and J.-P. Colinge, Evidence of different conduction mechanisms in accumulation mode p-channel SOI MOSFET's at room and liquidhelium temperatures // IEEE Trans. Electron. Devices 40(4), p. 727-732 (1993). https://doi.org/10.1109/16.202784 | | 6. J.-P. Colinge, Conduction mechanisms in thin-film accumulation-mode SOI p-channel MOSFET's // IEEE Trans. Electron. Devices 37(9), p. 718-723 (1990). https://doi.org/10.1109/16.47777 | | 7. J.-P. Colinge, Silicon-On-Insulator Technology: Materials to VLSI, 3rd edition. Kluwer Acad. Publ., Dordrecht (2004). https://doi.org/10.1007/978-1-4419-9106-5 | | 8. J.-P. Colinge, D. Flandre, and F. van de Wiele, Subthreshold slope of long-channel accumulation-mode p-channel MOSFET's // Solid-State Electron. 37(2), p. 289-294 (1994). https://doi.org/10.1016/0038-1101(94)90080-9 | | 9. F. van de Wiele, A long channel MOSFET model // Solid-State Electron. 22(12), p. 991-997 (1979). https://doi.org/10.1016/0038-1101(79)90001-7 | | 10. D. Flandre and A. Terao, Extended theoretical analysis of the steady-state linear behavior of accumulation-mode, long-channel p-MOSFETs on SOI substrates // Solid-State Electron. 35(8) p. 1085- 1092 (1992). https://doi.org/10.1016/0038-1101(92)90009-2 | | 11. D.-S. Jeon, D. E. Burk, A temperature-dependent SOI MOSFET model for high-temperature application (27 °C-300 °C) // IEEE Trans. Electron. Devices 38(9), p. 2101-2111 (1991). https://doi.org/10.1109/16.83736 | | 12. T. E. Rudenko, V. S. Lysenko, V. I. Kilchytska, A. N. Rudenko, A comprehensive analysis of the high-temperature off-state and subthreshold characteristics of SOI MOSFETs, in: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, edited by P. L. F. Hemment, V. S. Lysenko, A. N. Nazarov. Kluwer Acad. Publ., Dordrecht, p. 281-293 (2000). https://doi.org/10.1007/978-94-011-4261-8_27 | | 13. T. Sakurai, B. Linn, A. R. Newton, Fast-simulated diffusion: An optimization algorithm for multiminimum problems and its application to MOSFET model parameter extraction // IEEE Trans. Computer-Aided Design 11(2), p. 228-234 (1992). https://doi.org/10.1109/43.124401 | | 14. H.-S. Wong, M. H. White, T. J. Krutsick, R. V. Booth, Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET's // Solid-State Electron. 30(9), p. 953-968 (1987). https://doi.org/10.1016/0038-1101(87)90132-8 | | 15.J.-P. Eggermont, D. De Ceuster, D. Flandre, et al., Design of SOI CMOS operational amplifiers for applications up to 300 °C // IEEE Journal of SolidState Circuits 31(2) p. 179-186 (1996). https://doi.org/10.1109/4.487994 | |
|
|