Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (1) P. 004-012 (2007).
DOI:
https://doi.org/10.15407/spqeo10.01.004
References
1. B.E. Kustov, M.G. Milvidskii, Yu.G. Semenov, B.M. Turovskii, V.I. Shakhovtsov, V.L. Shindich, Deformation charges of isovalent impurities in silicon // Fizika tekhnika poluprovodnikov 20 (2), p. 270-274 (1986) (in Russian). | | 2. L.I. Khirunenko, V.I. Shakhovtsov, V.V. Shumov, The radiation defect formation in Ge-doped silicon under low-temperature irradiation // Fizika tekhika poluprovodnikov 32 (2), p. 132-134 (1998) (in Russian). https://doi.org/10.1134/1.1187329 | | 3. G.D. Watkins // IEEE Trans. Nucl. Sci. NS-16 (6), p. 13-18 (1969). https://doi.org/10.1109/TNS.1969.4325498 | | 4. C.V. Budtz-Jorgensen, P. Kringhoj, A. Nylandsted Larsen, N.V. Abrosimov, Deep-level transient spectroscopy of the Ge-vacancy pair in Ge-doped n-type silicon // Phys. Rev. B 58 (3), p. 1110-1113 (1998). https://doi.org/10.1103/PhysRevB.58.1110 | | 5. Yu.V. Pomozov, M.G. Sosnin, L.I. Khirunenko, V.I. Yashnik, N.V. Abrosimov, W. Shroder, M. Hohne, Oxygen-related radiation defects in Si1-xGex // Fizika tekhnika poluprovodnikov 34 (9), p. 1030-1034 (2000) (in Russian). https://doi.org/10.1134/1.1309399 | | 6. L.I. Khirunenko, V.I. Shakhovtsov, V.K. Shinkarenko, L.I. Shpinar, I.I. Yaskovets, Particularities of the processes of the radiation defect formation in Si 〈Ge〉 crystals // Fizika tekhnika poluprovodn. 21 (3), p. 562-565 (1987) (in Russian). | | 7. A.P. Dolgolenko, I.I. Fishchuk, Defect clusters and simple defect build-up kinetics in fast-neutron irradiated n-Si // Phys. status solidi (a) 50, p. 751- 755 (1978). https://doi.org/10.1002/pssa.2210500248 | | 8. M.W. Thompson, Defects and radiation damage in metals. Mir, Moscow, 1971 (in Russian). | | 9. B.R. Gossick, Disordered regions in semiconductors bombarded by fast neutrons // J. Appl. Phys. 30 (8), p. 1214-1218 (1959). https://doi.org/10.1063/1.1735295 | | 10. A.P. Dolgolenko, I.I. Fishchuk, A-centres build-up kinetics in the conductive matrix of pulled n-type silicon with calculation of their recharges at defect clusters // Phys. status solidi (a) 67 (8), p. 407-411 (1981). https://doi.org/10.1002/pssa.2210670207 | | 11. A.P. Dolgolenko, Variation of carrier removal rate with irradiation dose in fast-pile neutron irradiated n-Si // Phys. status solidi (a) 179, p. 179-188 (2000). https://doi.org/10.1002/1521-396X(200005)179:1<179::AID-PSSA179>3.0.CO;2-3 | | 12. A.P. Dolgolenko, P.G. Litovchenko, M.D. Varentsov, G.P. Gaidar, A.P. Litovchenko, Particularities of the formation of radiation defects in silicon with low and high concentration of oxygen // Phys. status solidi (b), 243 (8), p. 1842-1852 (2006). https://doi.org/10.1002/pssb.200541074 | | 13. A.P. Dolgolenko, P.G. Litovchenko, A.P. Litovchenko, M.D. Varentsov, V.F. Lastovetsky, G.P. Gaidar, Influence of growing and doping methods on radiation hardness of n-Si irradiated by fast-pile neutrons // Semiconductor Physics, Quantum Electronics & Optoelectronics 7 (1), p. 8- 15 (2004). | | 14. M. Huhtinen, Simulation of non-ionising energy loss and defect formation in silicon // Nucl. Instrum. Methods A 491, p. 194-215 (2002). https://doi.org/10.1016/S0168-9002(02)01227-5 | | 15. P.G. Litovchenko, F. Lemeilleur, A.P. Dolgolenko, L.I. Barabash, N.N. Kolychev, A.P. Litovchenko, V.F. Lastovezky, T.I. Kibkalo, L.A. Polivtsev, Dose dependence of the concentration of carriers in high resistivity Si irradiated by 24 GeV protons and properties of the detectors on its base // in: 3rd ROSE Workshop on Radiation Hardening of Silicon Detectors, DESY, Hamburg, 12-14, February, 1998, p. 20-24. | | 16. S. Goedecker, Th. Deutsch, L. Billard, A fourfold coordinated point defect in silicon // Phys. Rev. Lett. 88 (23), p. 235501-235505 (2002). https://doi.org/10.1103/PhysRevLett.88.235501 | | 17. G.D. Watkins, J.W. Corbett, Defects in irradiated silicon. I. Electron spin resonance of the Si Acenter // Phys. Rev. 121, p. 1001-1014 (1961). https://doi.org/10.1103/PhysRev.121.1001 | | 18. J.L. Lindstrom, T. Hallberg, J. Hermansson, L.I. Murin, B.A. Komarov, V.P. Markevich, M. Kleverman, B.G. Svensson, Interaction between self-interstitials and the oxygen dimer in silicon // Physica B 308-310, p. 284-289 (2001). https://doi.org/10.1016/S0921-4526(01)00694-9 | | 19. A. Dolgolenko, M. Varentsov, G. Gaidar, Energylevel position of bistable (CiCs) 0 defect in the B configuration in the forbidden band of n-Si // Phys. status solidi (b) 241, p. 2914-2922 (2004). https://doi.org/10.1002/pssb.200302060 | | 20. M. Asghar, M. Zafar Iqbai, N. Zafar, Characterization of deep levels introduced by alpha radiation in n-type silicon // J. Appl. Phys. 73 (8), p. 3698-3708 (1993). https://doi.org/10.1063/1.352930 | | 21. G.E. Jellison, Jr, Transient capacitance studies of an electron trap at Ec-ET = 0.105 eV in phosphorusdoped silicon // J. Appl. Phys. 53 (8) p. 5715-5719 (1982). https://doi.org/10.1063/1.331459 | | 22. P. Pellegrino, P. Leveque, J. Lavita, A. Hallen, C. Jagadish, B. G. Svensson, Annealing kinetics of vacancy-related defects in low-dose MeV self-ionimplanted n-type silicon // Phys. Rev. B 64, p. 195211-10 (2001). https://doi.org/10.1103/PhysRevB.64.195211 | | 23. J.L. Lindstrom, L.I. Murin, B.G. Svensson, V.P. Markevich, T. Hallberg, The VO2* defect in silicon // Physica B 340-342, p. 509-513 (2003). https://doi.org/10.1016/j.physb.2003.09.146 | | 24. G. D. Watkins, J. R. Troxell, A. P. Chatterjee, Vacancies and interstitials in silicon // in: Intern. Conf. on Defects and Radiation Effects in Semiconductors, Nice, 1978. Inst. of Phys., Conf. Series, Number 46, 1979, p. 16-30. | | 25. R.F. Konopleva, V.N. Ostroumov, The interaction of high-energy charged particles with germanium and silicon. Atomizdat, Moscow, 1975 (in Russian). | | 26. M. Moll, E. Fretwurst, M. Kuhnke, G. Lindstrom, Relation between microscopic defects and macroscopic changes in silicon detector properties after hadrons irradiation // Nucl. Instrum. Methods B 186, p. 100-110 (2002). https://doi.org/10.1016/S0168-583X(01)00866-7 | | 27. R.E. Whan, Oxygen-defect complexes in neutronirradiated silicon // J. Appl. Phys. 37 (9), p. 3378- 3382 (1966). https://doi.org/10.1063/1.1708867 | | 28. A.R. Chelyadinskii, F.F. Komarov, The defectimpurity engineering in the implanted silicon // Uspekhi fizicheskikh nauk, 173 (8), p. 813-845 (2003) (in Russian). https://doi.org/10.3367/UFNr.0173.200308b.0813 | | 29. S.J. Watts, C. Da Via, A. Karpenko, Macroscopic results for a novel oxygenated silicon material // Nucl. Instrum. and Meth. in Phys. Res. A, 485, p. 153-158 (2002). https://doi.org/10.1016/S0168-9002(02)00547-8 | | 30. S. Libertino, S. Coffa, Room temperature point defect migration in crystalline Si // Solid State Phenomena 82-84, p. 207-212 (2002). https://doi.org/10.4028/www.scientific.net/SSP.82-84.207 | | 31. C. Bonafos, D. Mathiot, A. Claverie, Ostwald ripening of end-of-range defects in silicon // J. Appl. Phys. 83 (6), p. 3008-3017 (1998). https://doi.org/10.1063/1.367056 | | 32. J.M. Pankratz, J.A. Sprague, M.L. Rudee, Investigation of neutron-irradiation damage in silicon by transmission electron microscopy // J. Appl. Phys. 39 (1), p. 101-106 (1968). https://doi.org/10.1063/1.1655713 | |
|
|