Semiconductor Physics, Quantum Electronics and Optoelectronics, 10 (1) P. 101-105 (2007).


1. A. Ardelea, G.F. Carey, A. Pardhanani, and W. Richardson, Simulation of macroscopic superconductivity for microelectronics // Physica C, 341-348, p. 2649-2650 (2000).
2. A. Aftalio, E. S&ndier, S. Serfaty: Pinning phenomena in the Ginzburg Landau model of superconductivity // J. Math. Pures Appl. 80(3), p. 339-372 (2001).
3. J. Deang, Q. Diu and M. Gunzburger, Modeling and computation of random thermal fluctuations and material defects in the Ginzburg-Landau model for superconductivity // J. Comput. Phys. 181, p. 45-67 (2002).
4. C. Berthod and B. Giovannini, Cooperon propagator description of high temperature superconductivity // Physica C 364-365, p. 467-470 (2001).
5. X. Hu, Bicritical phenomena and scaling of O(5) model // Physica A 321, p. 71-80 (2003).
6. W.J Kossler, C. Fetsch and K. Baranowski, Magnetic field distributions from longitudinally disordered pancake vortices // Physica B 326, p. 300-304 (2003).
7. L. Landau, and E. Lifschitz, Statistical Physics. MIR Edition, Moscow,1969 (in Russian).
8. L. Landau, and E. Lifschitz, Quantum Mechanics. MIR Edition, Moscow, 1969 (in Russian).
9. N. Bohr, Physique Atomiqu et Connaissance Humaine. Editions Gonthier, by Gauthier Villars, Paris, 1961.
10. M. Thinkham, Introduction to superconductivity. Second Edition, McGraw Hill Inc, 1996.
11. Charles W. Misner, Kip S. Thorne, and J.A. Wheeler, Inspired from vacuum fluctuations. "Gravitation" Company, San Fransisco, 1