Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 1. P. 001-007.
https://doi.org/
10.15407/spqeo15.01.001



References

1.    J. Robertson, Interfaces and defects of high oxides on silicon. Solid-State Electronics, 49, p. 283-293 (2005).
https://doi.org/10.1016/j.sse.2004.11.011
 
2.    H. Wong, H. Iwai, On the scaling issues and high replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectronic Eng. 83, p. 1867-1904 (2006).
https://doi.org/10.1016/j.mee.2006.01.271
 
3.    O. Engström, B. Raeissi, S. Hall, O. Buiu, M.C. Lemme, H.D.B. Gottlob, P.K. Hurley, and K. Cherkaoui, Navigation aids in the search for future high dielectrics: Physical and electrical trends. Solid-State Electronics, 51, p. 622-626 (2007).
https://doi.org/10.1016/j.sse.2007.02.021
 
4.    P.K. Hurley, K. Cherkaoui, E. O'Connor, M.C. Lemme, H.D.B. Gottlob, M. Schmidt, S. Hall, Y. Lu, O. Buiu, B. Raeissi, J. Piscator, O. Engström, and S.B. Newcomb, Interface defects in HfO2, LaSiOx, and Gd2O3 high /metal-gate structures on silicon. J. Electrochem. Soc. 155, p. G13-G20 (2008).
https://doi.org/10.1149/1.2806172
 
5.    A. Laha, H.J. Osten, A. Fissel, Influence of interface layer composition on the electrical properties of epitaxial Gd2O3 thin films for high application. Appl. Phys. Lett. 90, 113508 (2007).
https://doi.org/10.1063/1.2713142
 
6.    H.J. Osten, D. Kühne, A. Laha, M. Czernohorsky, E. Bugiel, and A. Fissel, Integration of functional epitaxial oxides into silicon: From high application to nanostructures. J. Vac. Sci. Technol. B, 25, p. 1039-1043 (2007).
https://doi.org/10.1116/1.2720858
 
7.    A. Laha, E. Bugiel, H.J. Osten, and A. Fissel, Crystalline ternary rare earth oxide with capacitance equivalent thickness below 1 nm for high application. Appl. Phys. Lett. 88, 172107 (2006).
https://doi.org/10.1063/1.2198518
 
8.    B. Raeissi, J. Piscator, O. Engström, S. Hall, O. Buiu, M.C. Lemme, H.D.B. Gottlob, P.K. Hurley, K. Cherkaoui, and H.J. Osten, High-k-oxide/silicon interfaces characterized by capacitance frequency spectroscopy. Solid-State Electronics 52, p. 1274-1279 (2008).
https://doi.org/10.1016/j.sse.2008.04.005
 
9.    J. Piscator, B. Raeissi, and O. Engström, The conductance method in a bottom-up approach applied on hafnium oxide/silicon interfaces. Appl. Phys. Lett. 94, 213507 (2009).
https://doi.org/10.1063/1.3138125
 
10.    J. Piscator, B. Raeissi, and O. Engström, Multiparameter admittance spectroscopy for metal-oxide-semiconductor systems. J. Appl. Phys. 106, 054510 (2009).
https://doi.org/10.1063/1.3213384
 
11.    W.K. Henson, K.Z. Ahmed, E.M. Vogel, J.R. Hauser, J.J. Wortman, R.D. Venables, M. Xu, and D. Venables, Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance–voltage measurements on MOS capacitors. IEEE Electron Device Lett. 20, p. 179-181 (1999).
https://doi.org/10.1109/55.753759
 
12.    E.M. Vogel, W.K. Henson, C.A. Richter, and J.S. Suehle, Limitations of conductance to the measurement of the interface state density of MOS capacitors with tunneling gate dielectrics. IEEE Trans. Electron Devices 47, p. 601-608 (2000).
https://doi.org/10.1109/16.824736
 
13.    K.J. Yang and C. Hu, MOS capacitance measurements for high-leakage thin dielectrics. IEEE Trans. Electron Devices, 46, p. 1500-1501 (1999).
https://doi.org/10.1109/16.772500
 
14.    E.H. Nicollian and A. Goetzberger, MOS conductance technique for measuring surface state parameters. Appl. Phys. Lett. 7, p. 216-219 (1965).
https://doi.org/10.1063/1.1754385
 
15.    E.H. Nicollian, J.R. Brews, MOS Physics and Technology. New York, Wiley, 1982.
 
16.    Y. Gomeniuk, A. Nazarov, Ya. Vovk, Yi Lu, O. Buiu, S. Hall, J.K. Efavi, M.C. Lemme, Low-temperature conductance measurements of surface states in HfO2-Si structures with different gate materials. Mat. Sci. in Semicond. Processing, 9, p. 980-984 (2006).
https://doi.org/10.1016/j.mssp.2006.10.014
 
17.    T. Walter, R. Herberholz, C. Müller, and H.W. Schock, Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. J. Appl. Phys. 80, p. 4411-4420 (1996).
https://doi.org/10.1063/1.363401
 
18.    C.R. Helms, and E.H. Poindexter, The silicon-silicon dioxide system: Its microstructure and imperfections. Repts Progr. Phys. 57, p. 791-852 (1994).
https://doi.org/10.1088/0034-4885/57/8/002
 
19.    A. Goetzberger, E. Klausmann, and M.J. Schulz, Interface states on semiconductor/insulator surfaces. CRC Crit. Rev. Solid State Sci. 6, p. 1-43 (1976).
https://doi.org/10.1080/10408437608243548
 
20.    G.J. Gerardi, E.H. Poindexter, P.J. Caplan, and N.M. Johnson, Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 49, p. 348-350 (1986).
https://doi.org/10.1063/1.97611
 
21.    P.V. Gray and D.M. Brown, Density of SiO2-Si interface states. Appl. Phys. Lett. 8, p. 31-33 (1966).
https://doi.org/10.1063/1.1754468
 
22.    Y.Y. Gomeniuk, Y.V. Gomeniuk, A.N. Nazarov, P.K. Hurley, K. Cherkaoui, S. Monaghan, P.E. Hellström, H.D.B. Gottlob, J. Schubert, J.M.J. Lopes, Electrical properties of high LaLuO3 gate oxide for SOI MOSFETs. In: Nanoscaled Semiconductor-on-Insulator Materials, Sensors and Devices, ed. by A.N. Nazarov and J.-P. Raskin. Adv. Mater. Res. 276, p. 87-93 (2011).