Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 1. P. 032-034.
https://doi.org/
10.15407/spqeo15.01.032



References

1.    J.S. Sanghera and I.D. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications: a review. J. Non-Cryst. Solids, 256-257, p. 6-16 (1999).
https://doi.org/10.1016/S0022-3093(99)00484-6
 
2.    B. Bureau, X.H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. Le Coq, M.R. Riley and J.H. Simmons, Recent advances in chalcogenide glasses. J. Non-Cryst. Solids, 5&346, p. 276-283 (2004).
 
3.    A. Kovalskiy, M. Vlcek, J. Cech, W.R. Heffner, C.M. Waits, M. Dubey and H. Jain, Chalcogenide glass e-beam and photo-resists for ultrathin gray scale patterning. J. Micro/Nanolithography,8(4), p. 043012-1-043012-11 (2009).
 
4.    S.K. Sundaram, B.R. Johnson, M.J. Schweiger, J.E. Martinez, B.J. Riley, L.V. Saraf, N.C. Anheier, Jr., P.J. Allen and J.F. Schultz, Chalcogenide glasses and structures for quantum sensing. Proc. SPIE,5359, p. 234-245 (2004).
https://doi.org/10.1117/12.517235
 
5.    D.-Y. Choi, S. Madden, A. Rode, R. Wang and B. Luther-Davies, Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides. Appl. Phys. Lett. 91, p. 011115-1-011115-3 (2007).
https://doi.org/10.1063/1.2754360
 
6.    Y. Guimond, J. Franks and Y. Bellec, Comparison of performances between GASIR moulded optics and existing IR optics. Proc. SPIE, 5406, p. 114-120 (2004).
https://doi.org/10.1117/12.543052
 
7.    Y. Guimond and Y. Bellec, Molded GASIR® infrared optics for automotive applications. Proc. SPIE, 6206, p. 62062L-1-62062L-6 (2006).
https://doi.org/10.1117/12.668887
 
8.    R.P. Wang, A. Smith, A. Prasad, D.Y. Choi and B. Luther-Davies, Raman spectra of GexAsySe1-x-y glasses. J. Appl. Phys. 106, p. 043520-1-043520-4 (2009).
https://doi.org/10.1063/1.3204951
 
9.    R.P. Wang, A. Smith, B. Luther-Davies, H. Kokkonen and I. Jackson, Observation of two elastic thresholds in GexAsySe1-x-y glasses. J. Appl. Phys. 105, p. 056109-1-056109-3 (2009).
https://doi.org/10.1063/1.3079806
 
10.    R.P. Wang, C.J. Zha, A.V. Rode, S.J. Madden and B. Luther-Davies, Thermal characterization of glasses by differential scanning calorimetry. J. Mater. Sci.: Mater. Electron. 18, p. S419-S422 (2007).
https://doi.org/10.1007/s10854-007-9229-1
 
11.    W.A. Kamitakahara, R.L. Cappelletti, P. Boolchand, B. Halfpap, F. Gompf, D.A. Neumann and H. Mutka, Vibrational densities of states and network rigidity in chalcogenide glasses. Phys. Rev. B, 44(1), p. 94-100 (1991).
https://doi.org/10.1103/PhysRevB.44.94
 
12.    S. Sen and B.G. Aitken, Atomic structure and chemical order in selenide and sulfoselenide glasses: An X-ray absorption fine structure spectroscopic study. Phys. Rev. B, 66, p. 134204-1-134204-10 (2002).
https://doi.org/10.1103/PhysRevB.66.134204
 
13.    R.P. Wang, A.V. Rode, D.Y. Choi and B. Luther-Davies, Investigation of the structure of glasses by X-ray photoelectron spectroscopy. J. Appl. Phys. 103, p. 083537-1-083537-5 (2008).
https://doi.org/10.1063/1.2909883
 
14.    S. Kozyukhin, R. Golovchak, A. Kovalskiy, O. Shpotyuk and H. Jain, Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS. Fizika Tekhnika Poluprovodnikov, 45(4), p. 433-436 (2011), in Russian.
https://doi.org/10.1134/s1063782611040129
 
15.    R. Golovchak, A. Kovalskiy, A.C. Miller, H. Jain and O. Shpotyuk, Structure of Se-rich glasses by high-resolution X-ray photoelectron spectroscopy. Phys. Rev. B, 76, p. 125208-1-125208-7 (2007).
https://doi.org/10.1103/PhysRevB.76.125208
 
16.    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp., Phys. Electr. Div., Eden Prairie, Minnesota, 1992.