Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 1. P. 001-006.
https://doi.org/10.15407/spqeo17.01.001


                                                                 

References

1. S.M. Sze, Kwok K. Ng, Physics of Semiconductor Devices. 3 rd Ed. John Wiley and Sons, Inc., Hoboken, New Jersey, 2007.
 
2. T.V. Blank, Yu.A. Gol'dberg, Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors, 41(11), p. 1263-1292 (2007).
https://doi.org/10.1134/S1063782607110012
 
3. Zhang Yue-Zong, Feng Shi-Wei, Guo Chun-Sheng, Zhang Guang-Chen, Zhuang Si-Xiang, Su Rong, Bai Yun-Xia, Lu Chang-Zhi, High-temperature characteristics of Ti/Al/Ni/Au ohmic contacts to n- GaN. Chin. Phys. Lett. 25(11), p. 4083-4085 (2008).
https://doi.org/10.1088/0256-307X/25/11/067
 
4. T.V. Blank, Yu.A. Gol'dberg, A.E. Posse, Flow of the current along metallic shunts in ohmic contacts to wide-gap III-V semiconductors. Semiconductors, 43(9), p. 1164-1169 (2009).
https://doi.org/10.1134/S1063782609090115
 
5. A.E. Belyaev, N.S. Boltovets, R.V. Konakova, Ya.Ya. Kudryk, A.V. Sachenko, V.N. Sheremet, Temperature dependence of contact resistance of Au-Ti-Pd 2 Si-n + -Si ohmic contacts. Semiconductor Physics, Quantum Electronics and Optoelectronics, 13(4), p. 436-438 (2010).
 
6. A.E. Belyaev, N.S. Boltovets, R.V. Konakova, Ya.Ya. Kudryk, A.V. Sachenko, V.N. Sheremet, A.O. Vinogradov, Temperature dependence of contact resistance for Au-Ti-Pd 2 Si-n + -Si ohmic contacts subjected to microwave irradiation. Semiconductors, 46(3), p. 330-333 (2012).
https://doi.org/10.1134/S1063782612030074
 
7. A.V. Sachenko, A.E. Belyaev, N.S. Boltovets, A.O. Vinogradov, V.P. Kladko, R.V. Konakova, Ya.Ya. Kudryk, A.V. Kuchuk, V.N. Sheremet, S.A. Vitusevich, Features of temperature dependence of contact resistivity in ohmic contact on lapped n-Si. J. Appl. Phys. 112(6), 063703 (2012).
https://doi.org/10.1063/1.4752715
 
8. A.V. Sachenko, A.E. Belyaev, N.S. Boltovets, R.V. Konakova, Ya.Ya. Kudryk, S.V. Novitskii, V.N. Sheremet, J. Li, S.A. Vitusevich, Mechanism of contact resistance formation in ohmic contacts with high dislocation density. J. Appl. Phys. 111(8), 083701 (2012).
https://doi.org/10.1063/1.3702850
 
9. F. Iucolano, G. Greco, F. Roccaforte, Correlation between microstructure and temperature dependent electrical behavior of annealed Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures. Appl. Phys. Lett. 103(20), 201604 (2013).
https://doi.org/10.1063/1.4828839
 
10. R.K. Kupka, W.A. Anderson, Minimal ohmic contact resistance limits to n-type semiconductors. J. Appl. Phys. 69(6), p. 3623-3632 (1991).
https://doi.org/10.1063/1.348509
 
11. G. Brezeanu, C. Cabuz, D. Dascalu, P.A. Dan, A computer method for the characterization ofsurface-layer ohmic contacts. Solid-State Electron. 30(5), p. 527-532 (1987).
https://doi.org/10.1016/0038-1101(87)90208-5
 
12. D.K. Ferry, First-order optical and intervalley scattering in semiconductors. Phys. Rev. B, 14(4), p. 1605-1609 (1976).
https://doi.org/10.1103/PhysRevB.14.1605
 
13. D.K. Schroder, Semiconductor Materials and Devices Characterization. 3 rd Ed., John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.
 
14. Ion Implantation and Beam Processing, Eds. J.S. Williams, J.M. Poate. Academic Press, N.Y., 1984.
 
15. R.H. Cox, H. Strack, Ohmic contacts for GaAs devices. Solid-State Electron. 10(12), p. 1213- 1218 (1967).
https://doi.org/10.1016/0038-1101(67)90063-9