Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 1. P. 061-066.
https://doi.org/10.15407/spqeo17.01.061


                                                                 

References

1. R.R. Gerke, T.G. Dubrovina, M.D. Mikhailov, Obtaining holographic diffraction gratings on light- sensitive layers of chalcogenide glasses by dry etching . J. Opt. Technol. 64(11), p. 1008-1012 (1997).
 
2. K. Petkov, Compositional dependence of the photoinduced phenomena in thin chalcogenide films . J. Optoelectron. Adv. Mat. 4(3), p. 611-629 (2002).
 
3. R. Todorov, Tz. Iliev, K. Petkov, Light-induced changes in the optical properties of thin films of Ge-S-Bi (Te, In) chalcogenides . J. Non-Cryst. Solids. 326&327, p. 263-267 (2003).
 
4. K. Naohiko, F. Tatsuo, T. Akihiro et al., GeS 2 /metal thin film bilayered structures as write- once-type optical recording materials . J. Appl. Phys. 100(11), 113115 (2006).
https://doi.org/10.1063/1.2398556
 
5. V.M. Maryan, G.T. Horvat, M.M. Pop et al., Photostimulated changes in the optical properties of sulphides germanium and arsenic thin films . Phys. Chem. Solid State, 9(3), p. 524-528 (2008), in Ukrainian.
 
6. V.M. Fridkin, Ferroelectrics Semiconductors. Consultants Bureau, New York, 1980.
 
7. P. Mural, Micromachened infrared detectors based on pyroelectric thin films . Repts. Progr. Phys. 64(10), p. 1339-1388 (2001).
https://doi.org/10.1088/0034-4885/64/10/203
 
8. S. Surthi, S. Kotru, R.K. Pandey, SbSI films for ferroelectric memory applications . Integr. Ferroelectr. 48 (1), p. 263-269 (2002).
https://doi.org/10.1080/10584580215458
 
9. M. Nowak, P. Mroczek, P. Duka et al., Using of textured polycrystalline SbSI in actuators . Sens. Actuators A Phys. 150(2), p. 251-256 (2009).
https://doi.org/10.1016/j.sna.2009.01.005
 
10. V.M. Rubish, Anomalous behaviour of dielectric permittivity of chalcogenide glasses in crystallization temperature range . Sensors Electronics and Microsystems Technologies, 1, p. 62-66 (2007), in Ukrainian.
 
11. V.M. Rubish, Obtaining and crystallization peculiarities of glasses on the antimony sulfoiodide basis . Phys. Chem. Solid State, 8(1), p. 41-46 (2007), in Ukrainian.
 
12. V.M. Rubish, M.Yu. Rigan, S.M. Gasinets et al., Obtaining and crystallization peculiarities of antimony sulphoiodide containing chalcogenide glasses . Ferroelectrics, 372(1), p. 87-92 (2008).
https://doi.org/10.1080/00150190802381993
 
13. P. Gupta, A. Stone, N. Woodward et al., Laser fabrication of semiconducting ferroelectric single crystal SbSI features on chalcogenide glass . Opt. Mater. Exp. 1(4), p. 652-657 (2011).
https://doi.org/10.1364/OME.1.000652
 
14. Yu.M. Azhniuk, P. Bhandivad, V.M. Rubish et al., Photoinduced changes in the structure of As2S3 - based SbSI nanoctystal-containing composites studied by Raman spectroscopy . Ferroelectrics, 416, p. 113-118 (2011).
https://doi.org/10.1080/00150193.2011.577718
 
15. Yu.M. Azhniuk, V. Stoyka, I. Petryshynets et al., SbSI nanocrystal formation in As-Sb-S-I glass under laser beam . Mater. Res. Bull. 47, p. 1520- 1522 (2012).
https://doi.org/10.1016/j.materresbull.2012.02.036
 
16. V.M. Rubish, V.O. Stefanovich, O.G. Guranich et al., Structure investigation of As-Sb-S-I system glasses by Raman spectroscopy . Nanosystems, Nanomaterials, Nanotehnologies, 6(4), p. 1119- 1127 (2008), in Ukrainian.
 
17. M. Barj, O.A. Mykaylo, D.I. Kaynts et al., Formation and structure of crystalline inclusions in As2S3-SbSI and As2Se3-SbSI systems glass matrices . J. Non-Cryst. Solids, 357, p. 2232-2234 (2011).
https://doi.org/10.1016/j.jnoncrysol.2010.11.095
 
18. V.M. Rubish, L. Bih, O.A. Mykaylo et al., The influence of obtaining and heat thetment conditions on the structure of As2S3 -SbSI system . Semiconductor Physics, Quantum Electronics & Optoelectronics, 16(2), p. 123-127 (2013).
https://doi.org/10.15407/spqeo16.02.123
 
19. L. Ding, D. Zhad, H. Jain et al., Structure of GeS2 - SbSI glasses by Raman spectroscopy . J. Amer. Ceram. Soc, 93(10), p. 2932-2934 (2010).
https://doi.org/10.1111/j.1551-2916.2010.03903.x
 
20. V.V. Petrov, A.A. Kryuchin, V.M. Rubish, Materials for Perspective Optoelectronic Devices. Naukova dumka-Verlag, Kiev, 2012 (in Russian).
 
21. P. Boolchand, J. Grathaus, M. Tenhaver et al., Structure of GeS2glass: Spectroscopic evidence for broken chemical order . Phys. Rev. B, 33(8), p. 5421-5434 (1986).
https://doi.org/10.1103/PhysRevB.33.5421
 
22. I.P. Kotsalas, C. Raptis. Structural Raman studies of GexS1-x chalcogenide glasses . J. Optoelectron. Adv. Mat. 3(3), p. 675-684 (2001).
 
23. L. Cai, P. Boolchand, Nanoscale phase separation of GeS2 glass . Phil. Mag. B, 82(15), p. 1649-1657 (2002).
 
24. D.I. Bletskan, V.S. Gerasimenko, Vibrational spectra and the structure of glasses of Ge-Bi-S system . Phys. Chem. Glass. 13 (3), p. 359-363 (1987), in Russian.
 
25. P.P. Shtets, V.I. Fedelesh, V.M. Kabatsij et al., Structure, dielectric and photoelastic properties of glasses in the system Ge-Sb-S. J. Optoelectron. Adv. Mat. 3(4), p. 937-940 (2001).
 
26. A. Feltz, Amorphous and Vitreous Inorganic Solids. Mir, Moscow, 1986 (in Russian).
 
27. B. Frumarova, M. Bilkova, M. Frumar et al., Thin films of Sb2S3 doped by Sm3+ ions . J. Non-Cryst. Solids, 326-327, p. 348-352 (2003).
https://doi.org/10.1016/S0022-3093(03)00432-0
 
28. V.M. Rubish, A.P. Shpak, V.I. Malesh, Investigation of the short-range order structure of antimony-sulfur system glasses by the methods of vibration and X-ray diffraction spectroscopy . Nanosystems, Nanomaterials, Nanotechnologies, 5(1), p. 189-202 (2007), in Ukrainian.
 
29. I.D. Turjanitsa, L.K. Vodop'yanov, V.M. Rubish et al., Raman spectra and dielectric properties of glasses of Sb-S-I system . J. Appl. Spectrosc. 44(5), p. 501-504 (1985), in Russian.
https://doi.org/10.1007/BF00667077
 
30. V.M. Rubish, V.M. Marjan, V.O. Stefanovich et al., Formation mechanism and nature of crystalline inclusions in the matrix of Sb2S3-AsSI system glasses . Phys. Chem. Solid State, 14(1), p. 70-74 (2003), in Ukrainian.
 
31. L. Koudelka, M. Pisarcik, Raman study of short range order in GexSyIz glasses . J. Non-Cryst. Solids, 113, p. 239-245 (1989).
https://doi.org/10.1016/0022-3093(89)90017-3
 
32. J. Grigas, E. Talik, V. Lasauskas, Splitting of the XPS in ferroelectric SbSI crystals . Ferroelectrics, 284, p. 147-160 (2003).
https://doi.org/10.1080/00150190390204790
 
33. C.H. Perry, D.K. Agrawal, The Raman spectrum of ferroelectric SbSI . Solid State Communs. 8, p. 225-230 (1970).
https://doi.org/10.1016/0038-1098(70)90634-4
 
34. M.K. Teng, M. Balcanski, M. Massot et al., Optical phonon analysis in the A V B VI C VII compounds . Phys. Stat. Solidi (b), 62, p. 173-182 (1974).
https://doi.org/10.1002/pssb.2220620117
 
35. D.I. Kaynts, A.P. Shpak, V.M. Rubish et al., Formation of ferroelectrics nanostructures in (As2S3)100-x(SbSI)x glassy matrix . Ferroelectrics, 371(1), p. 28-33 (2008).
https://doi.org/10.1080/00150190802385010
 
36. V.M. Rubish, M.Yu. Rigan, V.P. Perevuznyk et al., Glassforming, crystallization and physico-chemical properties of alloys in systems on the basis of SbSI . Phys. Chem. Solid State, 10(4), p. 861-866 (2009), in Ukrainian.
 
37. A.V. Gomonnai, I.M. Voynarovych, A.M. Solomon et al., X-ray diffraction and Raman scattering in SbSI nanocrystals . Mat. Res. Bull. 38(13), p. 1767- 1772 (2003).
https://doi.org/10.1016/S0025-5408(03)00181-8
 
38. I.M. Voynarovych, A.V. Gomonnai, A.M. Solomon et al., Characterization of SbSI nanocryatals by electron microscopy, X-ray diffraction and Raman scattering . J. Optoelectron. Adv. Mat. 5(3), p. 713- 718 (2003).