Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 1. P. 085-096.
https://doi.org/10.15407/spqeo17.01.085


                                                                 

References

1. P.H. Siegel, THz technology: An overview . Intern. J. High Speed Electronics and Systems 13(2), p. 351-394 (2003).
https://doi.org/10.1142/S0129156403001776
 
2. M.A. Kinch and B.V. Rollin, Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor . Br. J. Appl. Phys. 14, p. 672 (1963).
https://doi.org/10.1088/0508-3443/14/10/317
 
3. F. Sizov, THz radiation sensors . Optoelectron. Rev. 18(1), p. 10-36 (2010).
https://doi.org/10.2478/s11772-009-0029-4
 
4. K.D. Mynbaev, N.L. Bazhenov, V.I. Ivanov-Omskii et al., Photoluminescence of CdHgTe epilayers grown on silicon substrates . Technical Phys. Lett. 36(12), p. 1085-1088 (2010).
https://doi.org/10.1134/S1063785010120060
 
5. K.D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omskii et al., Photoluminescence of CdHgTe based nanoheterostructures . Technical Phys. Lett. 36(12), p. 1099-1102 (2010).
https://doi.org/10.1134/S1063785010120102
 
6. V.I. Ivanov-Omskii, K.D. Mynbaev, N.L. Bazhenov et al., Optical properties of molecular beam epitaxy-grown HgCdTe structures with potential wells . Phys. Status Solidi (c), 7(6), p. 1621-1623 (2010).
https://doi.org/10.1002/pssc.200983186
 
7. S. Dvoretsky, N. Mikhailov, Yu. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S. Ganichev, Growth of HgTe quantum wells for IR to THz detectors . J. Electron. Mater. 39(7), p. 918-923 (2010).
https://doi.org/10.1007/s11664-010-1191-7
 
8. M. Pociask, I.I. Izhnin, K.D. Mynbaev, A.I. Izhnin, S.A. Dvoretsky, N.N. Mikhailov, Yu.G. Sidorov, V.S. Varavin, Blue-shift in photoluminescence of ion-milled HgCdTe films and relaxation of defects induced by the milling . Thin Solid Films, 518(14), p. 3879-3881 (2010).
https://doi.org/10.1016/j.tsf.2009.10.156
 
9. D.A. Kozlov, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal, Cyclotron resonance in a two-dimensional semimetal based on a HgTe quantum well . Pis'ma v ZhETF, 93(3), p. 186-189 (2011), in Russian.
 
10. E.H. Hwang, S. Das Sarma, Limit to two-dimensional mobility in modulation-doped GaAs quantum structures: How to achieve a mobility of 100 million . Phys. Rev. B, 77(23), 235437 (2008).
https://doi.org/10.1103/PhysRevB.77.235437
 
11. J.R. Meyer, D.J. Arnold, C.A. Hoffman, and F.J. Bartoli, Free-carrier transport in superlattices: Smooth transition between the quasi-two-dimensional and uniform three-dimensional limits . Phys. Rev. B, 45(3), p. 1295-1304 (1992).
https://doi.org/10.1103/PhysRevB.45.1295
 
12. J.R. Meyer, D.J. Arnold, C.A. HofFman, F.J. Bartoli, L.R. Ram-Mohan, Electron and hole in-plane mobilities in HgTe-CdTe superlattices . Phys. Rev. B, 46(7), p. 4139-4146 (1992).
https://doi.org/10.1103/PhysRevB.46.4139
 
13. E.B. Olshanetsky, S. Sassine, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal, A.L. Aseev, Quantum Hall liquid-insulator and plateau-to-plateau transitions in a high mobility 2DEG in a HgTe quantum well . Pis'ma v ZhETF, 84(10), p. 661-665 (2006), in Russian.
 
14. J.J. Dubowski, T. Dietl, W. Szymanska, R.R. Gakazka, Electron scattering in CdxHg1-xTe . J. Phys. Chem. Solids, 42(5), p. 351-362 (1981).
https://doi.org/10.1016/0022-3697(81)90042-1
 
15. G. Bastard, Theoretical investigations of superlattice band structure in the envelope-function approximation . Phys. Rev. B, 25(12), p. 7584-7597 (1982).
https://doi.org/10.1103/PhysRevB.25.7584
 
16. W. Walukiewicz, Electron mobility and thermoelectric power in pure mercury telluride . J. Phys. C: Solid State Phys. 9(10), p. 1945 (1976).
https://doi.org/10.1088/0022-3719/9/10/013
 
17. E.O. Melezhik, J.V. Gumenjuk-Sichevska, and F.F. Sizov, Simulation of relaxation times and energy spectra of the CdTe / CdxHg1-xTe / CdTe quantum well for variable valence band offset, well width, and composition x . Semiconductors, 44(10), p. 1321-1327 (2010).
https://doi.org/10.1134/S1063782610100143
 
18. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures. Halsted Press, New York, 1988.
 
19. E.A. Kraut, The effect of a valence-band offset on potential and current distributions in HgCdTe heterostructures . J. Vac. Sci. Technol. A, 7(2), p. 420-423 (1989).
https://doi.org/10.1116/1.576195
 
20. P.M. Hui, H. Ehrenreich, N.F. Johnson, A possible resolution of the valence-band offset controversy in HgTe/CdTe superlattices . J. Vac. Sci. Technol. A 7(2), pp. 424-426 (1989).
https://doi.org/10.1116/1.576196
 
21. M. Truchsess, V. Latussek, C. R. Becker, E. Batke, Temperature dependent investigation of the HgTeCdTe valence band offset . Journal of Crystal Growth 159, pp. 1128-1131 (1996).
https://doi.org/10.1016/0022-0248(95)00757-1
 
22. C.R. Becker, V. Latussek, M. Li, A. Pfeuffer-Jeschke, G. Landwehr, Valence band offset in HgTe / Hg1-xCdxTe superlattices . J. Electron. Mater. 28(6), p. 826-829 (1999).
https://doi.org/10.1007/s11664-999-0078-y
 
23. D. Eich, K. Ortner, U. Groh, Z.H. Chen, C.R. Becker, G. Landwehr, R. Fink, E. Umbach, Band discontinuity and band gap of MBE grown HgTe/CdTe(001) heterointerfaces studied by k-resolved photoemission and inverse photoemission . Phys. Stat. Sol. (a), 173, p. 261-267 (1999).
https://doi.org/10.1002/(SICI)1521-396X(199905)173:1<261::AID-PSSA261>3.0.CO;2-#
 
24. J. Downes, D.A. Faux, Calculation of strain distributions in multiple-quantum-well strained-layer structures . J. Appl. Phys. 77, p. 2444-2447 (1995).
https://doi.org/10.1063/1.358771
 
25. E. Melezhik, O. Korotchenkov, Modeling boundary conditions for computation of piezoelectric fields in quantum dots with image charge analogy . J. Appl. Phys. 102, 013503 (2007).
https://doi.org/10.1063/1.2751397
 
26. E. Melezhik, O. Korotchenkov, Elastic fields of quantum dots in semi-infinite matrices: Green's function analytical analysis . J. Appl. Phys. 105, 023525 (2009).
https://doi.org/10.1063/1.3072674
 
27. A.V. Liubchenko, E.A. Salkov, F.F. Sizov, Physical basis of semiconductor infrared photoelectronics (Naukova Dumka, Kyiv, 1984) (in Russian).
 
28. G.L. Bir, G.E. Pikus, Simmetriya i deformacionnye e'ffekty v poluprovodnikah (Nauka, Moscow, 1972) (in Russian).
 
29. V. Latussek, C.R. Becker, G. Landwehr, R. Bini and L. Ulivi, Deformation potentials of the semimetal HgTe . PRB 71, pp. 125305-125311 (2005).
https://doi.org/10.1103/PhysRevB.71.125305
 
30. A.E. Merad, M.B. Kanoun, G. Merad, J. Cibert, H. Aourag, Full-potential investigation of the electronic and optical properties of stressed CdTe and ZnTe . Mat. Chem. Phys. 92(2), pp. 333-339 (2005).
https://doi.org/10.1016/j.matchemphys.2004.10.031
 
31. E.B. Olshanetsky, Z.D. Kvon, N.N. Mikhailov, E.G. Novik, I.O. Parm, S.A. Dvoretsky, Two-dimensional semimetal in HgTe-based quantum wells with surface orientation (100) . Sol. State. Comm. 152(4), pp. 265-267 (2012).
https://doi.org/10.1016/j.ssc.2011.11.034
 
32. Fu. Liang, C. L. Kane, Topological insulators with inversion symmetry . PRB 76(4), pp. 045302-045318 (2007).
https://doi.org/10.1103/PhysRevB.76.045302
 
33. R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko, Young`s modulus of cubic auxetics . Letters on materials 1(3), pp. 127-132 (in Russian) (2011).
 
34. V. Mitin, A. Kochelap, A. Stroscio, Quantum Heterostructures: microelectronics and optoelectronics (Cambridge Univercity Press, Cambridge, 1999).
 
35. B. Gelmont, K. Kim, M. Shur, Monte Carlo simulation of electron transport in gallium nitride . J. Appl. Phys. 74(3), pp. 1818-1821 (1993).
https://doi.org/10.1063/1.354787
 
36. Sang Dong Yoo, Kae Dal Kwack, Theoretical calculation of electron mobility in HgCdTe . J. Appl. Phys. 81(2), pp. 719-725 (1997).
https://doi.org/10.1063/1.364212
 
37. E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H. Buhmann, and L.W. Molenkamp, Band structure of semimagnetic Hg1-yMnyTe quantum wells . Phys. Rev. B 72(3), pp. 035321-035332 (2005).
https://doi.org/10.1103/PhysRevB.72.035321
 
38. H.G. Robinson, D.H. Mao, B.L. Williams, S. Hollander-Gleixner, J.E. Yu, and C.R. Helms, Modeling ion implantation of HgCdTe . J. Electron. Mater. 25(8), p. 1336-1340 (1996).
https://doi.org/10.1007/BF02655029
 
39. B.L. Williams, H.G. Robinson, C.R. Helms, Ion dependent interstitial generation of implanted mercury cadmium telluride . Appl. Phys. Lett. 71(5), p. 692-694 (1997).
https://doi.org/10.1063/1.119832
 
40. M.A. Kinch, Fundamentals of Infrared Detector Materials. SPIE, Washington, 2007.
https://doi.org/10.1117/3.741688
 
41. T. Ando, Self-consistent results for a GaAs/ AlxGa1-xAs heterojunction. II. Low temperature mobility . J. Phys. Soc. Japan, 51(12), p. 3900-3907 (1982).
https://doi.org/10.1143/JPSJ.51.3900
 
42. V. Ariel, V. Garber, D. Rosenfeld, G. Bahir, V. Richter, N. Mainzer, A. Sher, Electrical and structural properties of epitaxial CdTe/HgCdTe interfaces . J. Electron. Mater. 24(9), p. 1169-1174 (1995).
https://doi.org/10.1007/BF02653070
 
43. V.N. Dobrovolsky, F.F. Sizov, A room temperature, or moderately cooled, fast THz semiconductor hot electron bolometer . Semicond. Sci. Technol. 22, p. 103-106 (2007).
https://doi.org/10.1088/0268-1242/22/2/017
 
44. N.A. Kabir, Y. Yoon, J.R. Knab et al., Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems . Appl. Phys. Lett. 89(13), p. 132109-132111 (2006).
https://doi.org/10.1063/1.2357605
 
45. F. Sizov, A. Golenkov, D. But, M. Sakhno, V. Reva, Sub-THz radiation room temperature sensitivity of long-channel silicon field effect transistors . Opto-Electronics Rev. 20(2), p. 194-199 (2012).
https://doi.org/10.2478/s11772-012-0024-z