Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 001-011.
References 1. V.V. Vainberg, A.S. Pylypchuk, V.N. Poroshin, O.G. Sarbey, Effects of the real-space transfer of charge carriers in n-AlGaAs/GaAs heterostructures with delta-layers of impurity in the barriers. Ukr. J. Phys. 59(7), p. 721-725 (2014).https://doi.org/10.15407/ujpe59.07.0721 2. Z.S. Gribnikov, Negative differential conductivity in a multilayer heterostructure. Fizika, tekhnika poluprovodnikov, 6, p. 1380-1382 (1972), in Russian. 3. W.T. Masselink, Electron velocity in GaAs: Bulk and selectively doped heterostructures. Semicond. Sci. Technol. 4, p. 503-512 (1989). https://doi.org/10.1088/0268-1242/4/7/001 4. S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, GaN: Processing, defects, and devices. J. Appl. Phys. 86, p. 1 (1999). https://doi.org/10.1063/1.371145 5. O.J. Pooley, A.M. Gilbertson, P.D. Buckle, R.S. Hall, L. Buckle, M.T. Emeny, M. Fearn, L.F. Cohen and T. Ashley, Transport effects in remote-doped heterostructures. New J. Phys. 12, p. 053022 (2010). https://doi.org/10.1088/1367-2630/12/5/053022 6. H. Sun, A.R. Alt, H. Benedickter, E. Feltin, J.-F. Carlin, M. Gonschorek, N.R. Grandjean, and C.R. Bolognesi, 205-GHz (Al,In)N/GaN HEMTs. IEEE Electron Dev. Lett. 31(9), p. 957-959 (2010). https://doi.org/10.1109/LED.2010.2055826 7. K. Sakai and M. Tani, Terahertz Optoelectronics (Topics in Applied Physics 97, p. 1-31), Ed. K. Sakai. Springer, Berlin, 2005. https://doi.org/10.1007/10828028_1 8. P.H. Siegel, THz technology. IEEE Trans. Microwave Theory and Tech. 50(3), p. 910-928 (2002). https://doi.org/10.1109/22.989974 9. L. Ardaravicius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L.F. Eastman, J.R. Shealy, and A. Vertiatchikh, Electron drift velocity in AlGaN/GaN channel at high electric fields. Appl. Phys. Lett. 83(19), p. 4038-4040 (2003); https://doi.org/10.1063/1.1626258 V.V. Korotyeyev, V.A. Kochelap and K.W. Kim, Electron transport in bulk GaN under ultrashort high-electric field transient. Semicond. Sci. Technol. 26, 105008 (2011). https://doi.org/10.1088/0268-1242/26/10/105008 10. B.A. Danilchenko, S.E. Zelensky, E. Drok, S.A. Vitusevich, S.V. Danylyuk, N. Klein, H. Luth, A.E. Belyaev, and V.A. Kochelap, Hot carrier energy losses in conducting layers of AlGaN/GaN heterostructures grown on SiC and Al2O3 substrates. Phys. status solidi (b), 243(7), p. 1529-1532 (2006); https://doi.org/10.1002/pssb.200565445 Excess low-frequency noise in AlGaN/GaN-based high-electron-mobility transistors. Appl. Phys. Lett. 80(12), p. 2126-2128 (2002). https://doi.org/10.1063/1.1463202 11. O. Yilmazoglu, K. Mutamba, D. Pavlidis, T. Karaduman, First observation of bias oscillations in GaN Gunn diodes on GaN substrate. IEEE Trans. Electron. Devices, 55(6), p. 1563-1567 (2008). https://doi.org/10.1109/TED.2008.921253 12. A. Lisauskas, A. Reklaitis, R. Venckevicius, I. Kasalynas, G. Valusis, G. Grigaliunaite-Vonseviciene, H. Maestre, J. Schmidt, V. Blank, M.D. Thomson, H.G. Roskos, and K. Kohler, Experimental demonstration of efficient pulsed terahertz emission from a stacked GaAs/AlGaAs p-i-n-i heterostructure. Appl. Phys. Lett. 98, p. 091103 (2011). https://doi.org/10.1063/1.3561642 13. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V.V. Popov and M.S. Shur, Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett. 84, p. 2331-2334 (2004). https://doi.org/10.1063/1.1689401 14. M. Dyakonov and M. Shur, Current instability and plasma waves generation in ungated two-dimensional electron layers. Appl. Phys. Lett. 87, p. 111501 (2005). https://doi.org/10.1063/1.2042547 15. S. Spasov, G. Allison, A. Patane, L. Eaves, M.Yu. Tretyakov, A. Ignatov, M. Hopkinson, and G. Hill, High field electron dynamics in dilute nitride Ga(AsN). Appl. Phys. Lett. 93, p. 022111 (2008). https://doi.org/10.1063/1.2960547 16. M. Asada, S. Suzuki, and N. Kishimoto, Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. Appl. Phys. 47(6), p. 4375-4384 (2008). https://doi.org/10.1143/JJAP.47.4375 17. V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, K.W. Kim, D.L. Woolard, Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-III nitrides. J. Appl. Phys. 96, p. 6488-6491 (2004). https://doi.org/10.1063/1.1811388 18. V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, G. Sabatini, H. Marinchio, C. Palermo, and L. Varani, Theory of ballistic electron transport in n-i-n diodes. Negative dynamic resistance in THz-frequency range. J. Nanoelectron. Optoelectron. 6, p. 169-187 (2011). https://doi.org/10.1166/jno.2011.1145 19. Z.S. Gribnikov, Negative differential conductivity in a multilayer heterostructure. Fizika, tekhnika poluprovodnikov, 6, p. 1380-1382 (1972), in Russian. 20. W.T. Masselink, Real-space-transfer of electrons in InGaAs/InAlAs heterostructures. Appl. Phys. Lett. 67, p. 801-803 (1995). https://doi.org/10.1063/1.115448 21. Z.S. Gribnikov, K. Hess and G.A. Kosinovsky, Nonlocal and nonlinear transport in semiconductors: Real-space transfer effects. J. Appl. Phys. 77, p. 1337-1373 (1995). https://doi.org/10.1063/1.358947 22. T.H. Glisson, J.R. Hauser, M.A. Littlejohn, K. Hess, B.G. Streetman et al., Monte Carlo simulation of real space electron transfer in GaAs-AlGaAs heterostructures. J. Appl. Phys. 51, p. 5445-5449 (1980). https://doi.org/10.1063/1.327500 23. H. Shichijo, K. Hess and B.G. Streetman, Real-space electron transfer by thermionic emission in heterostructures: Analytical model for large widths. Solid-State Electronics, 23, p. 817-822 (1980). https://doi.org/10.1016/0038-1101(80)90097-0 24. Ch.-K. Hahn, T. Sugaya, K-Y. Jang, X.-L. Wang and M. Ogura, Electron transport properties in a GaAs/AlGaAs quantum wire grown on V-grooved GaAs sSubstrate by metal-organic vapor phase epitaxy. Jpn. J. Appl. Phys. 42, p. 2399-2403 (2003). https://doi.org/10.1143/JJAP.42.2399 25. V.V. Vainberg, A.S. Pylypchuk, V.N. Poroshin, O.G. Sarbey, Effects of the real-space transfer of charge carriers in n-AlGaAs/GaAs heterostructures with delta-layers of impurity in the barriers. Ukr. J. Phys. 59(7), p. 721-725 (2014). https://doi.org/10.15407/ujpe59.07.0721 26. T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.-P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, and V.A. Kochelap, Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure. Appl. Phys. Lett. 99, p. 082101 (2011). https://doi.org/10.1063/1.3627183 27. N. Chand, T. Henderson, J. Klem, W.T. Masselink, R. Fischer, Y.-Ch. Chang, and H. Morkoc, Comprehensive analysis of Si-doped (x = 0 to) : Theory and experiments. Phys. Rev. B, 30, p. 4481-92 (1984). https://doi.org/10.1103/PhysRevB.30.4481 28. K. Schmalz, I.N. Yassievich, K.L. Wang, and S.G. Thomas, Localized-state band induced by δ-doping in quantum wells. Phys. Rev. B, 57, p. 6579 (1998). https://doi.org/10.1103/PhysRevB.57.6579 29. V.E. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors. North-Holland, Amsterdam, 1987. 30. K.W. Kim, V.A. Kochelap, V.N. Sokolov, and S.M. Komirenko, Quasi-ballistic and overshoot transport in group III-nitrides in; GaN-based Materials and Devices: Growth, Fabrication, Characterization and Performance, ed. by M. Shur and R.F. Davis. World Scientific, 2004. 31. M. Levinstein, S. Rumyantsev and M. Shur, Handbook Series on Semiconductor Parameters, vol. 1, 2. World Scientific, London, 1996, 1999. 32. V.V. Mitin, V.A. Kochelap, and M. Stroscio, Quantum Heterostructures for Microelectronics and Optoelectronics. Cambridge University Press, New York, 1999. 33. H. Sakaki, H. Yoshimura and T. Matsusue, Carrier concentration dependent absorption spectra of modulation doped n-AlGaAs/GaAs quantum wells and performance analysis of optical modulators and switches using Carrier Induced Bleaching (CIB) and Refractive Index Change (CIRIC). Jpn. J. Appl. Phys. 26, p. L1104 (1987). https://doi.org/10.1143/JJAP.26.L1104 |