Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 1. P. 001-011.
https://doi.org/10.15407/spqeo18.01.001


                                                                 

References

1.    V.V. Vainberg, A.S. Pylypchuk, V.N. Poroshin, O.G. Sarbey, Effects of the real-space transfer of charge carriers in n-AlGaAs/GaAs heterostructures with delta-layers of impurity in the barriers. Ukr. J. Phys. 59(7), p. 721-725 (2014).
https://doi.org/10.15407/ujpe59.07.0721
 
2.    Z.S. Gribnikov, Negative differential conductivity in a multilayer heterostructure. Fizika, tekhnika poluprovodnikov, 6, p. 1380-1382 (1972), in Russian.
 
3.    W.T. Masselink, Electron velocity in GaAs: Bulk and selectively doped heterostructures. Semicond. Sci. Technol. 4, p. 503-512 (1989).
https://doi.org/10.1088/0268-1242/4/7/001
 
4.    S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, GaN: Processing, defects, and devices. J. Appl. Phys. 86, p. 1 (1999).
https://doi.org/10.1063/1.371145
 
5.    O.J. Pooley, A.M. Gilbertson, P.D. Buckle, R.S. Hall, L. Buckle, M.T. Emeny, M. Fearn, L.F. Cohen and T. Ashley, Transport effects in remote-doped heterostructures. New J. Phys. 12, p. 053022 (2010).
https://doi.org/10.1088/1367-2630/12/5/053022
 
6.    H. Sun, A.R. Alt, H. Benedickter, E. Feltin, J.-F. Carlin, M. Gonschorek, N.R. Grandjean, and C.R. Bolognesi, 205-GHz (Al,In)N/GaN HEMTs. IEEE Electron Dev. Lett. 31(9), p. 957-959 (2010).
https://doi.org/10.1109/LED.2010.2055826
 
7.    K. Sakai and M. Tani, Terahertz Optoelectronics (Topics in Applied Physics 97, p. 1-31), Ed. K. Sakai. Springer, Berlin, 2005.
https://doi.org/10.1007/10828028_1
 
8.    P.H. Siegel, THz technology. IEEE Trans. Microwave Theory and Tech. 50(3), p. 910-928 (2002).
https://doi.org/10.1109/22.989974
 
9.    L. Ardaravicius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L.F. Eastman, J.R. Shealy, and A. Vertiatchikh, Electron drift velocity in AlGaN/GaN channel at high electric fields. Appl. Phys. Lett. 83(19), p. 4038-4040 (2003);
https://doi.org/10.1063/1.1626258
 
V.V. Korotyeyev, V.A. Kochelap and K.W. Kim, Electron transport in bulk GaN under ultrashort high-electric field transient. Semicond. Sci. Technol. 26, 105008 (2011).
https://doi.org/10.1088/0268-1242/26/10/105008
 
10.    B.A. Danilchenko, S.E. Zelensky, E. Drok, S.A. Vitusevich, S.V. Danylyuk, N. Klein, H. Luth, A.E. Belyaev, and V.A. Kochelap, Hot carrier energy losses in conducting layers of AlGaN/GaN heterostructures grown on SiC and Al2O3 substrates. Phys. status solidi (b), 243(7), p. 1529-1532 (2006);
https://doi.org/10.1002/pssb.200565445
 
Excess low-frequency noise in AlGaN/GaN-based high-electron-mobility transistors. Appl. Phys. Lett. 80(12), p. 2126-2128 (2002).
https://doi.org/10.1063/1.1463202
 
11.    O. Yilmazoglu, K. Mutamba, D. Pavlidis, T. Karaduman, First observation of bias oscillations in GaN Gunn diodes on GaN substrate. IEEE Trans. Electron. Devices, 55(6), p. 1563-1567 (2008).
https://doi.org/10.1109/TED.2008.921253
 
12.    A. Lisauskas, A. Reklaitis, R. Venckevicius, I. Kasalynas, G. Valusis, G. Grigaliunaite-Vonseviciene, H. Maestre, J. Schmidt, V. Blank, M.D. Thomson, H.G. Roskos, and K. Kohler, Experimental demonstration of efficient pulsed terahertz emission from a stacked GaAs/AlGaAs p-i-n-i heterostructure. Appl. Phys. Lett. 98, p. 091103 (2011).
https://doi.org/10.1063/1.3561642
 
13.    W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V.V. Popov and M.S. Shur, Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett. 84, p. 2331-2334 (2004).
https://doi.org/10.1063/1.1689401
 
14.    M. Dyakonov and M. Shur, Current instability and plasma waves generation in ungated two-dimensional electron layers. Appl. Phys. Lett. 87, p. 111501 (2005).
https://doi.org/10.1063/1.2042547
 
15.    S. Spasov, G. Allison, A. Patane, L. Eaves, M.Yu. Tretyakov, A. Ignatov, M. Hopkinson, and G. Hill, High field electron dynamics in dilute nitride Ga(AsN). Appl. Phys. Lett. 93, p. 022111 (2008).
https://doi.org/10.1063/1.2960547
 
16.    M. Asada, S. Suzuki, and N. Kishimoto, Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. Appl. Phys. 47(6), p. 4375-4384 (2008).
https://doi.org/10.1143/JJAP.47.4375
 
17.    V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, K.W. Kim, D.L. Woolard, Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-III nitrides. J. Appl. Phys. 96, p. 6488-6491 (2004).
https://doi.org/10.1063/1.1811388
 
18.    V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, G. Sabatini, H. Marinchio, C. Palermo, and L. Varani, Theory of ballistic electron transport in n-i-n diodes. Negative dynamic resistance in THz-frequency range. J. Nanoelectron. Optoelectron. 6, p. 169-187 (2011).
https://doi.org/10.1166/jno.2011.1145
 
19.    Z.S. Gribnikov, Negative differential conductivity in a multilayer heterostructure. Fizika, tekhnika poluprovodnikov, 6, p. 1380-1382 (1972), in Russian.
 
20.    W.T. Masselink, Real-space-transfer of electrons in InGaAs/InAlAs heterostructures. Appl. Phys. Lett. 67, p. 801-803 (1995).
https://doi.org/10.1063/1.115448
 
21.    Z.S. Gribnikov, K. Hess and G.A. Kosinovsky, Nonlocal and nonlinear transport in semiconductors: Real-space transfer effects. J. Appl. Phys. 77, p. 1337-1373 (1995).
https://doi.org/10.1063/1.358947
 
22.    T.H. Glisson, J.R. Hauser, M.A. Littlejohn, K. Hess, B.G. Streetman et al., Monte Carlo simulation of real space electron transfer in GaAs-AlGaAs heterostructures. J. Appl. Phys. 51, p. 5445-5449 (1980).
https://doi.org/10.1063/1.327500
 
23.    H. Shichijo, K. Hess and B.G. Streetman, Real-space electron transfer by thermionic emission in heterostructures: Analytical model for large widths. Solid-State Electronics, 23, p. 817-822 (1980).
https://doi.org/10.1016/0038-1101(80)90097-0
 
24.    Ch.-K. Hahn, T. Sugaya, K-Y. Jang, X.-L. Wang and M. Ogura, Electron transport properties in a GaAs/AlGaAs quantum wire grown on V-grooved GaAs sSubstrate by metal-organic vapor phase epitaxy. Jpn. J. Appl. Phys. 42, p. 2399-2403 (2003).
https://doi.org/10.1143/JJAP.42.2399
 
25.    V.V. Vainberg, A.S. Pylypchuk, V.N. Poroshin, O.G. Sarbey, Effects of the real-space transfer of charge carriers in n-AlGaAs/GaAs heterostructures with delta-layers of impurity in the barriers. Ukr. J. Phys. 59(7), p. 721-725 (2014).
https://doi.org/10.15407/ujpe59.07.0721
 
26.    T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.-P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, and V.A. Kochelap, Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure. Appl. Phys. Lett. 99, p. 082101 (2011).
https://doi.org/10.1063/1.3627183
 
27.    N. Chand, T. Henderson, J. Klem, W.T. Masselink, R. Fischer, Y.-Ch. Chang, and H. Morkoc, Comprehensive analysis of Si-doped (x = 0 to) : Theory and experiments. Phys. Rev. B, 30, p. 4481-92 (1984).
https://doi.org/10.1103/PhysRevB.30.4481
 
28.    K. Schmalz, I.N. Yassievich, K.L. Wang, and S.G. Thomas, Localized-state band induced by δ-doping in quantum wells. Phys. Rev. B, 57, p. 6579 (1998).
https://doi.org/10.1103/PhysRevB.57.6579
 
29. V.E. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors. North-Holland, Amsterdam, 1987.
 
30.    K.W. Kim, V.A. Kochelap, V.N. Sokolov, and S.M. Komirenko, Quasi-ballistic and overshoot transport in group III-nitrides in; GaN-based Materials and Devices: Growth, Fabrication, Characterization and Performance, ed. by M. Shur and R.F. Davis. World Scientific, 2004.
 
31.    M. Levinstein, S. Rumyantsev and M. Shur, Handbook Series on Semiconductor Parameters, vol. 1, 2. World Scientific, London, 1996, 1999.
 
32.    V.V. Mitin, V.A. Kochelap, and M. Stroscio, Quantum Heterostructures for Microelectronics and Optoelectronics. Cambridge University Press, New York, 1999.
 
33.    H. Sakaki, H. Yoshimura and T. Matsusue, Carrier concentration dependent absorption spectra of modulation doped n-AlGaAs/GaAs quantum wells and performance analysis of optical modulators and switches using Carrier Induced Bleaching (CIB) and Refractive Index Change (CIRIC). Jpn. J. Appl. Phys. 26, p. L1104 (1987).
https://doi.org/10.1143/JJAP.26.L1104