Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N 1. P. 067-074.
DOI: https://doi.org/10.15407/spqeo19.01.067


References



1.    A. Hangleiter, Nonradiative recombination via deep impurity levels in silicon: Experiment. Phys. Rev. B, 35(17), p. 9149-9160 (1987). DOI: 10.1103/PhysRevB.35.9149.
https://doi.org/10.1103/PhysRevB.35.9149
 
2.    L.G. Geerings and D. Macdonald, Base doping and recombination activity of impurities in crystalline silicon solar cells. Progr. Photovolt: Res. Appl. 12(4), p. 309-316 (2004). DOI: 10.1002/pip.546.
https://doi.org/10.1002/pip.546
 
3.    B.L. Sopori, L. Jastrzebski, T. Tan, A comparison of gettering in single- and multicrystalline silicon for solar cells. 25th IEEE Photovoltaic Specialists Conference, 1996, p. 625-628. DOI: 10.1109/ PVSC.1996.564206.
 
4.    A.V. Sachenko, A.I. Shkrebtyi, R.M. Korkishko, V.P. Kostylyov, N.R. Kulish, I.O. Sokolovskyi, Features of photoconversion in highly efficient silicon solar cells. Semiconductors, 49(2), p. 264-269 (2015). DOI: 10.1134/S1063782615020189.
https://doi.org/10.1134/S1063782615020189
 
5.    J.S. Blakemore, Semiconductor Statistics. Pergamon Press, Oxford, 1962.
 
6.    A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B, 86, 165202 (2012). DOI: 10.1103/ PhysRevB.86.165202.
 
7.    A.P. Gorban, A.V. Sachenko, V.P. Kostylyov et al., Effect of excitons on photoconversion efficiency in the p+-n-n+- and n+-p-p+-structures based on single-crystalline silicon. Semiconductor Physics, Quantum Electronics and Optoelectronics, 3(3), p. 322-329 (2000).
 
8.    A.V. Sachenko, A.P. Gorban, V.P. Kostylyov, I.O. Sokolovskyi, The radiative recombination coefficient and the internal quantum yield of electroluminescence in silicon. Semiconductors, 40(8), p. 884-889 (2006). DOI: 10.1134/ S1063782606080045.
 
9.    A. Hangleiter, and R. Häcker, Enhancement of band-to-band Auger recombination by electron-hole correlations. Phys. Rev. Lett. 65(2), p. 215-218 (1990). DOI: 10.1103/PhysRevLett.65.215.
https://doi.org/10.1103/PhysRevLett.65.215
 
10.    A.V. Sachenko, A.P. Gorban, V.P. Kostylyov, I.O. Sokolovskyi, Quadratic recombination in
 
silicon and its influence on the bulk lifetime. Semiconductors, 41(3), p. 281-284 (2007). DOI: 10.1134/S1063782607030074.
https://doi.org/10.1134/S1063782607030074
 
11.    M.J. Kerr and A. Cuevas, General parameterization of Auger recombination in crystalline silicon. J. Appl. Phys. 91(4), p. 2473-2480 (2002). DOI: 10.1063/1.1432476.
https://doi.org/10.1063/1.1432476
 
12.    R.A. Sinton, A. Cuevas, and M. Stuckings, Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. 25th IEEE Photovoltaic Specialists Conf., 1996, p. 457-460. DOI: 10.1109/PVSC.1996.564042.
https://doi.org/10.1109/PVSC.1996.564042
 
13.    R. Gogolin, R. Ferre, M. Turcu, N.-P. Harder, Silicon heterojunction solar cells: Influence of
 
H2-dilution on cell performance. Solar Energy Materials & Solar Cells, 106, p. 47-50 (2012). DOI: 10.1016/j.solmat.2012.06.001.
https://doi.org/10.1016/j.solmat.2012.06.001
 
14.    A. Jano, S. Tohoda, K. Matsuyama et al., 24.7 record efficiency hit solar cell on thin silicon wafer. 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, p. 1846-1848. DOI: 10.4229/28thEUPVSEC2013-2AO.2.5.