Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N 1. P. 075-078.
DOI: https://doi.org/10.15407/spqeo19.01.075


References



1.    H. Fritzsche, N. Ibaraki, Thermostimulated conductivity in amorphous semiconductors. Phil. Mag., Part B, 52(3), p. 299-311(1985).
 
2.    S.C. Agarwal, H. Fritzsche. Phys. Rev. B, 10, p. 4351 (1974).
https://doi.org/10.1103/PhysRevB.10.4351
 
3.    Gu. Benyuan, Zhengyi Xu, and Bizhen Dong, A theoretical interpretation of thermostimulated conductivity in amorphous semiconductors. J. Non-Crystalline Solids, 97, p. 479-482 (1987).
 
4.    S.V. Kondratenko, O.V. Vakulenko, Vas.P. Kunets, Y.I. Mazur, V.G. Dorogan, M.E. Ware & G.J. Salamo, Photoconductivity peculiarities in InGaAs quantum wire heterostructures: anisotropy and high photoresponsivity at room temperature. Semiconductor Sci. Technol. 27(10), 105024 (2012).
https://doi.org/10.1088/0268-1242/27/10/105024
 
5.    A.G. Milnes, Deep Impurities in Semiconductors. 1973.
 
6.    O.V. Vakulenko, S.L. Golovins'kij, S.V. Kon-dratenko, Y. Mazur, Z.M. Vang & G.D. Salamo, Effect of interface defect states on photoelectric properties of InxGa1–xAs/GaAs heterostructures with quantum dots. Ukrainskyi Fizych. Zhurnal, 56(9), p. 944-952 (2011).
 
7.    Vas.P. Kunets, S. Prosandeev, Y.I. Mazur, M.E. Ware, M.D. Teodoro, V.G. Dorogan & G.J. Salamo, Isotropic Hall effect and "freeze-in" of carriers in the InGaAs self-assembled quantum wires. J. Appl. Phys. 110(8), 083714 (2011).