Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 064-068 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.064


References

1. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites – a new family of the tetrahedrally close-packed structures. Mat. Res. Bull. 1979. 14. P. 241–248.
https://doi.org/10.1016/0025-5408(79)90125-9
 
2. Studenyak I.P., Kranjčec M., Kovacs Gy.S., Desnica-Franković D., Panko V.V., Guranich P.P. Electric conductivity and optical absorption edge of Cu6P(SexS1–x)5I fast-ion conductors in the selenium-rich region. J. Phys. Chem. Solids. 2001. 62, No. 4. P. 665–672.
https://doi.org/10.1016/S0022-3697(00)00187-6
 
4. Studenyak I.P. Influence of anionic substitution on phase transitions in Cu6P(S1–xSex)5I superionic ferroelastics. Ferroelectrics. 2001. 254. P. 311–317.
https://doi.org/10.1080/00150190108215010
 
5. Studenyak I.P., Suslikov L.M., Kovacs Gy.Sh., Kranjčec M., Tovt V.V. Interrelation between optical, refractometric properties and lattice parameters in Cu6P(S1–xSex)5I crystals. Optics and Spectroscopy. 2001. 90. P. 608–611.
https://doi.org/10.1134/1.1366747
 
6. Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Desnica I.D., Panko V.V., Slivka V.Yu. Influence of compositional disorder on optical absorption processes in Cu6P(S1−xSex)5I crystals. J. Mater. Res. 2001. 16. P. 1600–1608.
https://doi.org/10.1557/JMR.2001.0222
 
7. Studenyak I.P., Kranjčec M., Izai V.Yu., Chomolyak A.A., Vorohta M., Matolin V., Cserhati C., Kökényesi S. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films. 2012. 520. P. 1729–1733.
https://doi.org/10.1016/j.tsf.2011.08.043
 
8. Studenyak I.P., Kranjčec M., Chomolyak A.A., Vorohta M., Matolin V. Optical absorption and refractive properties of superionic conductor Cu6PS5I thin films. Nanosystems, Nanomaterials, Nanotechnologies. 2012. 10. P. 489–496.
 
9. Studenyak I.P., Bendak A.V., Izai V.Yu. et al. Electrical and optical parameters of Cu6PS5I-based thin films deposited using magnetron sputtering. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. 19. P. 79–83.
https://doi.org/10.15407/spqeo19.01.079
 
10. Studenyak I.P., Kranjčec M., Nahusko O.T., Borets O.M. Influence of Hf→Zr substitution on optical and refractometric parameters of Hf1−xZrxO2 thin films. Thin Solid Films. 2005. 476, No. 1. P. 137–141.
https://doi.org/10.1016/j.tsf.2004.09.048
 
11.    Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953. 92. P. 1324–1326.
https://doi.org/10.1103/PhysRev.92.1324
 
12. Sumi H., Sumi A. The Urbach–Martienssen rule revisited. J. Phys. Soc. Japan. 1987. 56. P. 2211–2220.
https://doi.org/10.1143/JPSJ.56.2211
 
13. Kurik M.V. Urbach rule (Review). phys. status solidi (a). 1971. 8. P. 9–30.
 
14. Beaudoin M., DeVries A.J.G., Johnson S.R., Laman H., Tiedje T. Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 1997. 70. P. 3540–3542.
https://doi.org/10.1063/1.119226
 
15. Yang Z., Homewood K.P., Finney M.S., Harry M.A., Reeson K.J. Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 1995, 78. P. 1958–1963.
https://doi.org/10.1063/1.360167
 
16. Cody G.D., Tiedje T., Abeles B., Brooks B., Goldstein Y. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 1981. 47. P. 1480–1483.
https://doi.org/10.1103/PhysRevLett.47.1480