Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 079-084 (2017).


1. Minami T. Transparent conductive oxides for transparent electrode applications. Semicond. Sci. Technol. 2005. 20, No. 4. P. 159-194.
2. Vijayalakshmi S. Investigations on ZnO:M (M = Al, Cd), SnO2:Zn and Zn2SnO4 thin films deposited by spray pyrolysis method. http:.
3. Chen Y.C. and You H.M. Microstructures and dielectric properties of inverse-spinel structure Zn2SnO4 thin films by RF magnetron sputtering. J. Mater. Sci.: Mater. Electron. 2016. 27, No. 2. P. 2031–2035.
4. Wang J.X., Xie S.S. and Gao Y. et al. Growth and characterization of axially periodic Zn2SnO4 (ZTO) nanostructures. J. Cryst. Growth. 2004. 267, No. 1–2. P. 177–183.
5. Fu G., Chen H. and Chen Z. et al. Humidity sensitive characteristics of Zn2SnO4–LiZnVO4 thick films prepared by the sol–gel method. Sens. Actuators B. 2002. 81, No. 2. P. 308–312.
6. Kozhukharov S. and Tchaoushev S. Spray pyrolysis equipment for various applications. J. Chem. Technol. Metall. 2013. 48, No. 1. P. 111–118.
7. Rozati S.M. and Shadmani E. Effect of Zn concentration on physical properties of nanostructure tin oxide films prepared by spray pyrolysis. DIG J NANOMATER BIOS. 2011. 6. No. 2. P. 365–372.
8. Baruah S. and Dutta J. Zinc stannate nanostructures: hydrothermal synthesis. Technol. Adv. Mater. 2011. 12, No. 1. P. 13004(1–18).
9. Wang J.X., Xie S.S. and Yuan H.J. et al. Synthesis, structure, and photoluminescence of Zn2SnO4 single-crystal nanobelts and nanorings. Solid State Communs. 2004. 131, No. 7. P. 435–440.
10. Ganbavle V.V., Patil M.A. and Deshmukh H.P. et al. Pyrolysis development of Zn2SnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature. J. Anal. Appl. Pyrolysis. 2014. 107. P. 233–241.
11. Karthick A., Menaka S.M. and Uma G. et al. Structural and optical properties of Zn2SnO4 thin films prepared by spray pyrolysis. J. Environ. Nanotechnol. 2014. 3, No. 3. P. 101–105.
12. Ardyanian M., Moeini M., and Juybari H.A. Thermoelectric and photoconductivity properties of zinc oxide – tin oxide binary systems prepared by spray pyrolysis. Thin Solid Films. 2014. 552. P. 39–45.
13. Stambolova I., Konstantinov K. and Kovacheva D. et al. Spray pyrolysis preparation and humidity sensing characteristics of spinel zinc stannate thin films. J. Solid State Chem. 1997. 309, No. 128. P. 305–309.
14. Dobrozhan O., Opanasyuk A.S. and Kurbatov D. et al. Influence of substrate temperature on the structural and optical properties of crystalline ZnO films obtained by pulsed spray pyrolysis. Surf. Interface Anal. 2015. 47, No. 5. P. 601–606.
15. Starikov V.V., Ivashchenko M.M. and Opanasyuk A.S. et al. Surfase morphology and optical properties of CdSe films obtained by the close-spaced vacuum sublimation technique. J. Nano-Electron. Phys. 2009. 1, No. 4. P. 119-126.
16. Abdel-Aziz M.M., Yahia I.S. and Wahab L.A. et al. Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films. Appl. Surf. Sci. 2006. 252, No. 23. P. 8163–8170.
17. Salohub A.O., Klimov O.V., Opanasyuk A.S. et al. Morphology, chemical composition and optical properties of Zn2SnO4 films obtained by pulsed spray pyrolysis. Proc. NAP-2016 Intern. Conf. 2016. 5, No. 1. P. 01NTF23(1–5).
18. Satoh K., Kakehi Y. and Okamoto A. et al. Influence of oxygen flow ratio on properties of Zn2SnO4 thin films deposited by RF magnetron sputtering. Jpn. J. Appl. Phys., Part 2. 2005. 44, No. 1–7. P. L34–L37.
19. DiDomenico M. and Wemple S.H. Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects. Jpn. J. Appl. Phys. 1969. 40, No. 2. P. 720–734.