Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 096-104 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.096


References

1.    Tuchin V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Second edition. PM 166, SPIE Press, Bellingham, WA, 2007.
 
2.    Wang X., Yao G., Wang L.-H. Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose. Appl. Opt. 2002. 41. P. 792–801.
https://doi.org/10.1364/AO.41.000792
 
3.    Wang X., Wang L.-H. Propagation of polarized light in birefringent turbid media: A Monte Carlo study. J. Biomed. Opt. 2002. 7. p. 279–290.
https://doi.org/10.1117/1.1483315
 
4.    Angelsky O.V., Bekshaev A.Ya., Maksimyak P.P., Maksimyak A.P., Hanson S.G., Zenkova C.Yu. Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles. Opt. Exp. 2014. 22, No. 3. P. 2267–2277.
https://doi.org/10.1364/OE.22.002267
 
5.    Cheong W.-F., Prahl S.A., Welch A.J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 1990. 26. P. 2166–2185.
https://doi.org/10.1109/3.64354
 
6.    Angelsky O.V., Bekshaev A.Ya., Maksimyak P.P., Maksimyak A.P., Hanson S.G., Zenkova C.Yu. Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles. Opt. Exp. 2013. 21, No. 7. P. 8922–8938.
https://doi.org/10.1364/OE.21.008922
 
7.    Angel'skii O.V., Ushenko A.G., Arkhelyuk A.D., Ermolenko S.B., Burkovets D.N. Scattering of laser radiation by multifractal biological structures. Optics and Spectroscopy. 2000. 88, No. 3. P. 444–447.
https://doi.org/10.1134/1.626815
 
8.    Angelsky O.V., Bekshaev A.Ya., Maksimyak P.P., Maksimyak A.P., Hanson S.G. Measurement of small light absorption in microparticles by means of optically induced rotation. Opt. Exp. 2015. 23, No. 6. P. 7152–7163.
https://doi.org/10.1364/OE.23.007152
 
9.    Ushenko Yu.A., Boychuk T.M., Bachynsky V.T., Mincer O.P. Diagnostics of structure and physiological state of birefringent biological tissues: Statistical, correlation and topological approaches, in: Handbook of Coherent-Domain Optical Methods. Springer Science+Business Media, New York, 2013. P. 107–148.
 
10.    Ushenko Yu.A. Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes. J. Biomed. Opt. 2011. 16. P. 066006.
https://doi.org/10.1117/1.3585689
 
11.    Angelsky O.V., Besaha R.N., Mokhun A.I., Mokhun I.I., Sopin M.O., Soskin M.S., Vasnetsov M.V. Singularities in vectoral fields. Proc. SPIE. 1999. 3904. P. 40.
https://doi.org/10.1117/12.370443
 
12.    Wolf E. Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A. 2003. 312. P. 263–267.
https://doi.org/10.1016/S0375-9601(03)00684-4
 
13.    Tervo J., Setala T., Friberg A. Degree of coherence for electromagnetic fields. Opt. Exp. 2003. 11. P. 1137–1143.
https://doi.org/10.1364/OE.11.001137
 
14.    Angelsky O.V., Tomka Yu.Ya., Ushenko A.G., Ushenko Y.G., Yermolenko S.B. 2-D tomography of biotissue images in pre-clinic diagnostics of their pre-cancer states. Proc. SPIE. 2005. 5972. P. 158–162.
https://doi.org/10.1117/12.639726
 
15.    Ushenko A.G., Angelsky P.O., Sidor M.I., Marchuk Yu.F., Andreychuk D.R., and Pashkovskaya N.V. Spatial-frequency selection of complex degree of coherence of laser images of blood plasma in diagnostics and differentiation of pathological states of human organism of various nosology. Appl. Opt. 2014. 53. P. B172–B180.
https://doi.org/10.1364/AO.53.00B172
 
16.    Ushenko A.G., Burkovets D.N., Ushenko Yu.A. Polarization phase mapping and reconstruction of biological tissue architectonics during diagnosis of pathological lesions. Optics and Spectroscopy. 2002. 93, No. 3. P. 449–456.
https://doi.org/10.1134/1.1509829
 
17.    Ushenko Yu.A., Tomka Yu.Ya. and Dubolazov A.V. Complex degree of mutual anisotropy of extracellular matrix of biological tissues. Optics and Spectroscopy. 2011. 110. P. 814–819.
https://doi.org/10.1134/S0030400X11050195
 
18.    Gerrard A., Burch J.M. Introduction to Matrix Methods in Optics. New York, A Wiley-Intersci. Publ., 1975.
 
19.    Angel'skii O.V., Ushenko A.G., Ermolenko S.B., Ushenko Yu.A., Pishak O.V. Polarization based visualization of multifractal structures for the diagnostics of pathological changes in biological tissues. Optics and Spectroscopy, 2000. 89, No. 5. P. 799–804.
https://doi.org/10.1134/1.1328141
 
20.    Goodman J.W. Statistical properties of laser speckle patters. In: Laser Speckle and Related Phenomena, Ed. J.C. Dainty. Berlin, Springer-Verlag, 1975. P. 9–75.
 
21.    Kakturskii L.V. Clinical morphology of acute coro-nary syndrome. Arkh. Patol. 2007. 69. P. 16–19.
 
22.    Ushenko V.A., Sidor M.I., Marchuk Y.F., Pashkovskaya N.V., Andreichuk D.R. Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues. Optics and Spectroscopy. 2014. 117, No. 1. P. 152–157.
https://doi.org/10.1134/S0030400X14070248
 
23.    Ushenko V.A., Zabolotna N.I., Pavlov S.V., Burcovets D.M., Novakovska O.Yu. Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images. Proc. SPIE. 2013. 9066, Eleventh International Conference on Correlation Optics. P. 90661X.
https://doi.org/10.1117/12.2023604
 
24.    Ushenko V.A., Gorsky M.P. Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer. Optics and Spectroscopy. 2013. 115, No. 2. P. 290–297.
https://doi.org/10.1134/S0030400X13080171
 
25.    Basso C., Calabrese F., Corrado D., Thiene G. Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings. Cardiovascular Res. 2001. 50. P. 290–300.
https://doi.org/10.1016/S0008-6363(01)00261-9
 
26.    Pérez-Cárceles M.D., Noguera J., Jiménez J.L., Martínez P., Luna A., Osuna E. Diagnostic efficacy of biochemical markers in diagnosis post-mortem of ischemic heart disease. Forensic Sci. Intern. 2004. 142. P. 1–7.
https://doi.org/10.1016/j.forsciint.2004.02.007
 
27.    Ushenko Yu.A., Gorsky M.P., Dubolazov A.V., Motrich A.V., Ushenko V.A., Sidor M.I. Spatial-frequency Fourier polarimetry of the complex degree of mutual anisotropy of linear and circular birefringence in the diagnostics of oncological changes in morphological structure of biological tissues. Quantum Electronics. 2012. 42, No. 8. P. 727.
https://doi.org/10.1070/QE2012v042n08ABEH014825
 
28.    Ushenko V.A. Complex degree of mutual coherence of biological liquids, in: ROMOPTO International Conference on Micro- to Nano-Photonics III (pp. 88820V-88820V), International Society for Optics and Photonics, 2013.
https://doi.org/10.1117/12.2032668
 
29.    Martínez Díaz F., Rodríguez-Morlensín M., Pérez-Cárceles M.D., Noguera J., Luna A. and Osuna E. Biochemical analysis and immunohistochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage. Histol. Histopathol. 2005. 20. P. 475–481.
 
30.    Angelsky O.V., Polyanskii P.V., Hanson S.G. Singular optical coloring of regularly scattered white light. Opt. Exp. 2006. 14, No. 17. P. 7579–7586.
https://doi.org/10.1364/OE.14.007579
 
31.    Ushenko Yu.O., Dubolazov O.V., Karachevtsev A.O., Gorsky M.P., Marchuk Y.F. Wavelet analysis of Fourier polarized images of the human bile. Appl. Opt. 2012. 51, No. 10. P. C133–C139.
https://doi.org/10.1364/AO.51.00C133
 
32.    Ushenko Yu.A., Ushenko V.A., Dubolazov A.V., Balanetskaya V.O., Zabolotna N.I. Mueller-matrix diagnostics of optical properties of polycrystalline networks of human blood plasma. Optics and Spectroscopy, 2012. 112, No. 6. P. 884–892.
https://doi.org/10.1134/S0030400X12050232
 
33.    Ushenko Yu.A., Tomka Yu.Ya., Dubolazov A.V. Laser diagnostics of anisotropy in birefringent networks of biological tissues in different physiological conditions. Quantum Electronics. 2011. 41, No. 2. P. 170–175.
https://doi.org/10.1070/QE2011v041n02ABEH014215
 
34.    Ushenko V.A., Koval G.D., Gavrylyak M.S. Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images. Proc. SPIE. 2013. 8856, Applications of Digital Image Processing XXXVI. P. 88562E.
 
35.    Gavrylyak M.S., Grygoryshyn P.M. The correlation-optical method measuring time of thrombus formation. Proc. SPIE. 2013. 9066, Eleventh International Conference on Correlation Optics. P. 90661U.
 
36.    Gavrylyak M.S. Correlation method for measuring the largest Lyapunov exponent in optical fields. Ukr. J. Phys. Opt. 2008. 9, No. 2. P. 119–127.
https://doi.org/10.3116/16091833/9/2/119/2008
 
37.    Angelsky O.V., Ushenko A.G., Ushenko Y.G. Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state. J. Biomed. Opt. 2005. 10, No. 6. P. 060502–060502-3.
https://doi.org/10.1117/1.2149844
 
38.    C.S. Davis, Statistical Methods of the Analysis of Repeated Measurements. New York, Springer-Verlag, 2002.
 
39.    A. Petrie, B. Sabin, Medical Statistics at a Glance. Blackwell Publishing, 2005.