Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 105-109 (2017).
DOI: https://doi.org/10.15407/spqeo20.01.105


References

1.    Marrakchi G., Joly J.F., Vincent F. et al. Characteristics of electron traps in rapid thermal annealed GaAs using a capping proximity technique. Appl. Surf. Sci. 1989. 36. P. 564–571.
https://doi.org/10.1016/0169-4332(89)90951-3
 
2.    Jialu Liu, Tingqing Zhang, Rapid thermal annealing characteristics of Be implanted into InSb. Appl. Surf. Sci. 1998. 126. P. 231–234.
https://doi.org/10.1016/S0169-4332(97)00695-8
 
3.    Kreutz E.W., Rickus E. and Sotnik N. The effect of temperature on the stoichiometry of InSb(110) surfaces. Surf. Technol. 1980. 11. P. 171–177.
https://doi.org/10.1016/0376-4583(80)90044-8
 
4.    htpp://www.ioffe.ru/SVA/NSM/semicond/.
 
5.    Jin Y.J., Zhang D.H., Chen X.Z., Tang X.H. Sb antisite defects in InSb epilayers prepared by metalorganic chemical vapor deposition. J. Crystal Growth. 2011. 318. P. 356–359.
https://doi.org/10.1016/j.jcrysgro.2010.10.105
 
6.    Sen Gupta A., Naidu S.V., Roy R., and Sen P. Vacancy formation energy in InSb from positron trapping measurements. Solid State Communs. 1986. 58, No. 3. P. 219–222.
https://doi.org/10.1016/0038-1098(86)90847-1
 
7.    Kendall D.L., Huggins R.A. Self-diffusion in indium antimonide. J. Appl. Phys. 1969. 40. P. 2750–2759.
https://doi.org/10.1063/1.1658073
 
8.    Morozov A.N., Abaeva T.V., Bublik V.T. Effect of In and Sb vacancies on temperature dependence of InSb lattice parameter at high temperatures. Cryst. Res. Technol. 1986. 21. P. 613–617.
https://doi.org/10.1002/crat.2170210510
 
9.    Höglund A., Castleton C.W.M., Göthelid M., Johansson B., and Mirbt S. Point defects on the (110) surfaces of InP, InAs, and InSb: A comparison with bulk. Phys. Rev. B. 2006. 74. P. 075332.
https://doi.org/10.1103/PhysRevB.74.075332
 
10.    Tahini H.A., Chroneos A., Murphy S.T., Schwingenschlögl U., and Grimes R.W. Vacancies and defect levels in III–V semiconductors. J. Appl. Phys. 2013. 114, No. 6. P. 063517.
https://doi.org/10.1063/1.4818484
 
11.    Chroneos A., Tahini H.A., Schwingenschlögl U., and Grimes R.W. Antisites in III-V semicon-ductors: Density functional theory calculations. J. Appl. Phys. 2014. 116, No. 2. P. 023505.
https://doi.org/10.1063/1.4887135
 
12.    Hong Ky Nguyen, Pavesi L., Araújo D., Ganière J.D., and Reinhart F.K. Thermal conversion of n-type GaAs:Si to p-type in excess arsenic vapor. J. Appl. Phys. 1991. 70, No. 7. P. 3887.
https://doi.org/10.1063/1.349196
 
13.    Ohkubo N., Shishikura M., and Matsumoto S. Thermal conversion of semiinsulating GaAs in high-temperature annealing. J. Appl. Phys. 1993. 73, No. 2. P. 615–618.
https://doi.org/10.1063/1.353371
 
14.    Weng Yumin, Zheng Qingping, Fan Zhineng, Zong Xiangfu, Thermal conversion of semi-insulating GaAs due to gallium vacancies and anti-structure disorder. Chin. Phys. Lett. 1992. 9, No. 7. P. 375–378.
https://doi.org/10.1088/0256-307X/9/7/011
 
15.    Farrow R.L., Chang R.K., Mroczkowski S., and Pollak F.H. Detection of excess crystalline As and Sb in III-V oxide interfaces by Raman scattering. Appl. Phys. Lett. 1977. 31, No. 11. P. 768–770.
https://doi.org/10.1063/1.89542
 
16.    Bir G.L. Effect of surface recombination on photoconductivity of semiconductors. Fizika Tverd. Tela. 1959. 1, No. 1. P. 67–76 (in Russian).
 
17.    Moss T.S., Burrell G.J., Ellis B. Semiconductor Opto-Electronics. Butterworth, 1973.
 
18.    Smith R.A. Semiconductors, Second edition. Cambridge University Press, 1978.
 
19.    Infrared Photon Detectors. Ed. by A. Rogalski. SPIE Opt. Eng. Press, N.Y., 1995.
 
20.    Dereniak E.L. and Boreman G.D. Infrared Detectors and Systems. New York, John Wiley & Sons, Inc., 1996. P. 90.