Semiconductor Physics, Quantum Electronics and Optoelectronics, 20 (1) P. 105-109 (2017).
References 1. Marrakchi G., Joly J.F., Vincent F. et al. Characteristics of electron traps in rapid thermal annealed GaAs using a capping proximity technique. Appl. Surf. Sci. 1989. 36. P. 564–571. https://doi.org/10.1016/0169-4332(89)90951-3 2. Jialu Liu, Tingqing Zhang, Rapid thermal annealing characteristics of Be implanted into InSb. Appl. Surf. Sci. 1998. 126. P. 231–234. https://doi.org/10.1016/S0169-4332(97)00695-8 3. Kreutz E.W., Rickus E. and Sotnik N. The effect of temperature on the stoichiometry of InSb(110) surfaces. Surf. Technol. 1980. 11. P. 171–177. https://doi.org/10.1016/0376-4583(80)90044-8 4. htpp://www.ioffe.ru/SVA/NSM/semicond/. 5. Jin Y.J., Zhang D.H., Chen X.Z., Tang X.H. Sb antisite defects in InSb epilayers prepared by metalorganic chemical vapor deposition. J. Crystal Growth. 2011. 318. P. 356–359. https://doi.org/10.1016/j.jcrysgro.2010.10.105 6. Sen Gupta A., Naidu S.V., Roy R., and Sen P. Vacancy formation energy in InSb from positron trapping measurements. Solid State Communs. 1986. 58, No. 3. P. 219–222. https://doi.org/10.1016/0038-1098(86)90847-1 7. Kendall D.L., Huggins R.A. Self-diffusion in indium antimonide. J. Appl. Phys. 1969. 40. P. 2750–2759. https://doi.org/10.1063/1.1658073 8. Morozov A.N., Abaeva T.V., Bublik V.T. Effect of In and Sb vacancies on temperature dependence of InSb lattice parameter at high temperatures. Cryst. Res. Technol. 1986. 21. P. 613–617. https://doi.org/10.1002/crat.2170210510 9. Höglund A., Castleton C.W.M., Göthelid M., Johansson B., and Mirbt S. Point defects on the (110) surfaces of InP, InAs, and InSb: A comparison with bulk. Phys. Rev. B. 2006. 74. P. 075332. https://doi.org/10.1103/PhysRevB.74.075332 10. Tahini H.A., Chroneos A., Murphy S.T., Schwingenschlögl U., and Grimes R.W. Vacancies and defect levels in III–V semiconductors. J. Appl. Phys. 2013. 114, No. 6. P. 063517. https://doi.org/10.1063/1.4818484 11. Chroneos A., Tahini H.A., Schwingenschlögl U., and Grimes R.W. Antisites in III-V semicon-ductors: Density functional theory calculations. J. Appl. Phys. 2014. 116, No. 2. P. 023505. https://doi.org/10.1063/1.4887135 12. Hong Ky Nguyen, Pavesi L., Araújo D., Ganière J.D., and Reinhart F.K. Thermal conversion of n-type GaAs:Si to p-type in excess arsenic vapor. J. Appl. Phys. 1991. 70, No. 7. P. 3887. https://doi.org/10.1063/1.349196 13. Ohkubo N., Shishikura M., and Matsumoto S. Thermal conversion of semiinsulating GaAs in high-temperature annealing. J. Appl. Phys. 1993. 73, No. 2. P. 615–618. https://doi.org/10.1063/1.353371 14. Weng Yumin, Zheng Qingping, Fan Zhineng, Zong Xiangfu, Thermal conversion of semi-insulating GaAs due to gallium vacancies and anti-structure disorder. Chin. Phys. Lett. 1992. 9, No. 7. P. 375–378. https://doi.org/10.1088/0256-307X/9/7/011 15. Farrow R.L., Chang R.K., Mroczkowski S., and Pollak F.H. Detection of excess crystalline As and Sb in III-V oxide interfaces by Raman scattering. Appl. Phys. Lett. 1977. 31, No. 11. P. 768–770. https://doi.org/10.1063/1.89542 16. Bir G.L. Effect of surface recombination on photoconductivity of semiconductors. Fizika Tverd. Tela. 1959. 1, No. 1. P. 67–76 (in Russian). 17. Moss T.S., Burrell G.J., Ellis B. Semiconductor Opto-Electronics. Butterworth, 1973. 18. Smith R.A. Semiconductors, Second edition. Cambridge University Press, 1978. 19. Infrared Photon Detectors. Ed. by A. Rogalski. SPIE Opt. Eng. Press, N.Y., 1995. 20. Dereniak E.L. and Boreman G.D. Infrared Detectors and Systems. New York, John Wiley & Sons, Inc., 1996. P. 90. |