Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (1) P. 011-018 (2019).
DOI: https://doi.org/10.15407/spqeo22.01.011


References

1. Sidhant Grover. Effect of Transmission Line Measurement (TLM) Geometry on Specific Contact Resistivity Determination. A thesis for the degree of Master of Science in Materials Science and Engineering in the School of Chemistry and Materials Science, College of Science Rochester Institute of Technology, December 2016.
2. Holland A.S., Reeves G.K. New challenges to the modelling and electrical characterization of ohmic contacts for ULSI devices. Microelectronics Reliability. 2000. 40, No 6. P. 965971; doi: 10.1109/ICMEL.2000.838732.
https://doi.org/10.1109/ICMEL.2000.838732
3. Berger H.H., Holland A.S., Reeves G.K. Contact resistance and contact resistivity. J. Electrochem. Soc. 1972. 119, No 4. P. 507-514. doi: 10.1149/1.2404240.
https://doi.org/10.1149/1.2404240
4. Sheremet V.N. Metrological aspects of measuring resistance of ohmic contacts. Radioelectronics and Communications Systems. 2010. 53, Issue 3. P. 119-128; https://doi.org/10.3103/S0735272710030015.
https://doi.org/10.3103/S0735272710030015
5. Razali N.M., Wah Y.B. Power comparisons of ShapiroWilk, KolmogorovSmirnov, Lilliefors and AndersonDarling tests. Journal of Statistical Modeling and Analytics. 2011. 2, No 1, Р. 21-33.
6. Reeves G.K. Specific contact resistance using a circular transmission line model. Solid-State Electronics. 1980. 23. No 5. P. 487490. https://doi.org/10.1016/0038-1101(80)90086-6.
https://doi.org/10.1016/0038-1101(80)90086-6
7. Basanets V.V., Slepokurov V.S., Shynkarenko V.V., Kudryk Ya.Ya, Kudryk R.Ya, Konakova R.V., Kovtonuk V.M. Studying the resistivity of ohmic contacts AuTiPdn-Si for avalanche transit-time diodes. Tekhnologiya i konstruirovaniye v elektronnoy apparature. 2015. №1. C. 33-37 (in Russian); doi: 10.15222/TKEA2015.1.33.
https://doi.org/10.15222/TKEA2015.1.33
8. Belyaev A.E., Boltovets N.S., Kapitanchuk L.M. et al. The features of temperature dependence of contact resistivity of AuTiPd2Sip+-Si ohmic contacts. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2010. 13, No 1. P. 8-11.
9. Sachenko A.V., Belyaev A.E., Boltovets N.S. et al. On a feature of temperature dependence of contact resistivity for ohmic contacts to n-Si with an n+-n doping step. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. 17, No 1. P. 1-6.
https://doi.org/10.15407/spqeo17.01.001
10. Belyaev A.E., Pilipenko V.A., Anischik V.M. et al. Role of dislocations in formation of ohmic contacts to heavily doped n-Si. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. 16, No 2. P. 99-110.
https://doi.org/10.15407/spqeo16.02.099
11. Shepela A. The specific contact resistance of Pd2Si contacts on n- and p-Si. Solid-State Electronics. 1973. 16, Issue 4. P. 477-481. https://doi.org/10.1016/0038-1101(73)90185-8.
https://doi.org/10.1016/0038-1101(73)90185-8