Semiconductor Physics, Quantum Electronics & Optoelectronics, 24 (1), P. 16-21 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.016


References

1. Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 2015. 54. P. 040103.
https://doi.org/10.7567/JJAP.54.040103

2. Privitera S.M.S., Latrice G., Camarda M., Piluso N., and La Via F. Electrical properties of extended defects in 4H-SiC investigated by photoinduced current measurements. Appl. Phys. Exp. 2017. 10. P.036601.
https://doi.org/10.7567/APEX.10.036601

3. Stepanov S.I., Nikolaev V.I., Bougrov V.E. and Romanov A.E. Gallium oxide: properties and applications - a review. Rev. Adv. Matter Sci. 2016. 44. P. 63-86.

4. Pearton S.J., Jiancheng Yang J., Cary P.H. et al. A review of Ga 2 O 3 materials, processing, and devices. Appl. Phys. Rev. 2018. 5. P. 011301.
https://doi.org/10.1063/1.5006941

5. Rhoderick E.H. Metal-semiconductor contacts. IEEPROC. 1982. 129. P. 1-14.
https://doi.org/10.1049/ip-i-1.1982.0001

6. Latreche A. Combined thermionic emission and tunneling mechanisms for the analysis of the leakage current for Ga 2 O 3 Schottky barrier diodes. SN Appl. Sci. 2019. 1. P. 188.
https://doi.org/10.1007/s42452-019-0192-2

7. Latreche A. Conduction mechanisms of the reverse leakage current of ?-Ga 2 O 3 Schottky barrier diodes. SPQEO. 2019. 22. P. 19?25.
https://doi.org/10.15407/spqeo22.04.397

8. Latreche A. Conduction mechanisms of the reverse leakage current of 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2019. 34. P. 025016.
https://doi.org/10.1088/1361-6641/aaf8cb

9. Hatakenama T. and Shinohe T. Reverse characteris- tics of a 4H-SiC Schottky barrier diode. Mater. Sci. Forum. 2002. 389-393. P. 1169-1172.
https://doi.org/10.4028/www.scientific.net/MSF.389-393.1169

10. Latreche A. Combination of thermionic emission and tunneling mechanisms to analyze the leakage current in 4H-SiC Schottky barrier diodes. SPQEO. 2019. 22. P. 19?25.
https://doi.org/10.15407/spqeo22.01.019

11. Blasciuc-Dimitriu D., Horsfall A.B., Wright N.G. et al. Quantum modeling of I-V characteristics for 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2005. 20 . P. 10-15.
https://doi.org/10.1088/0268-1242/20/1/002

12. Furno M., Bonani F. and Ghione G. Transfer matrix method modelling of inhomogeneous Schottky barrier diodes on silicon carbide. Solid-State Electron. 2007. 51. P. 466?474.
https://doi.org/10.1016/j.sse.2007.01.028

13. Treu M., Rupp R., Kpels H. and Bartsch W. Temperature dependence of forward and reverse characteristics of Ti, W, Ta and Ni Schottky diodes on 4H-SiC. Mater. Sci. Forum. 2001. 353-356. P. 679-682.
https://doi.org/10.4028/www.scientific.net/MSF.353-356.679

14. Higashiwaki M., Konishi K., Sasaki K. et al. Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga 2 O 3 (001) Schottky barrier diodes fabricated on n-Ga 2 O 3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett. 2016. 108. P. 133503.
https://doi.org/10.1063/1.4945267

15. Okino H., Kameshiro N., Konishi K. et al. Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes. J. Appl. Phys. 2017. 122. P. 235704.
https://doi.org/10.1063/1.5009344

16. Crofton J. and Sriram S. Reverse leakage current calculations for SiC Schottky contacts. IEEE Trans. Electron. Devices. 1996. 43. P. 2305-2307.
https://doi.org/10.1109/16.544427

17. Padovani F.A. and Stratton R. Field and thermionic field emission in Schottky barriers. Solid-State Electron. 1962. 9. P. 695-707.
https://doi.org/10.1016/0038-1101(66)90097-9

18. Umezawa H., Saito T., Tokuda N. et al. Leakage current analysis of diamond Schottky barrier diode. Appl. Phys. Lett. 2007. 90. P. 073506.
https://doi.org/10.1063/1.2643374

19. Kiziroglou M.E., Li X., Zhukov A.A. et al. Thermionic field emission at electrodeposited Ni-Si Schottky barriers. Solid-State Electron. 2008. 52. P. 1032-1018.
https://doi.org/10.1016/j.sse.2008.03.002

20. Latreche A. Validity of the Padovani-Stratton formulas for analysis of reverse current-voltage characteristics of 4H-SiC Schottky barrier diodes. Semicond. Sci. Technol. 2019. 34. P. 055021.
https://doi.org/10.1088/1361-6641/ab1191

21. Tsu R. and Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973. 22. P. 562-564.
https://doi.org/10.1063/1.1654509

22. Eriksson J., Rorsman N. and Zirath H. 4H-silicon carbide Schottky barrier diodes for microwave applications. IEEE Trans. Microwave Theory Technol. 2003. 51. P. 796-804.
https://doi.org/10.1109/TMTT.2003.808610

23. Latreche A. and Ouennoughi Z. Modified Airy function method modelling of tunnelling current for Schottky barrier diodes on silicon carbide. Semicond. Sci. Technol. 2013. 28. P. 105003.
https://doi.org/10.1088/0268-1242/28/10/105003

24. Zheng L., Joshi R.P. and Fazi C. Effects of barrier height fluctuations and electron tunnelling on the reverse characteristics of 6H-SiC Schottky contacts. J. Appl. Phys. 1999. 85. P. 3701-3707.
https://doi.org/10.1063/1.369735

25. Rhoderick E.H. and Williams R.H. Metal- Semiconductor Contact. Oxford: Oxford University Press, 1988.

26. Stratton R. Volt-current characteristics for tunneling through insulating films. J. Phys. Chem. Solids. 1962. 23. P. 1177-1190.
https://doi.org/10.1016/0022-3697(62)90165-8

27. Stratton R. Theory of field emission from semiconductors. Phys. Rev. 1962. 125. P. 67-82.
https://doi.org/10.1103/PhysRev.125.67

28. Itoh A. and Matsunami H. Analysis of Schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices. phys. status solidi (a). 1997. 162. P. 389- 408.
https://doi.org/10.1002/1521-396X(199707)162:1<389::AID-PSSA389>3.0.CO;2-X

29. Roccaforte F. Richardson's constant in inhomo- geneous silicon carbide Schottky contacts. J. Appl. Phys. 2003. 93. P. 9137-9144.
https://doi.org/10.1063/1.1573750

30. Nicholls J. R., Dimitrijev S. A compact model for SiC Schottky barrier diodes based on the fundamental current mechanisms. IEEE Journal of the Electron Devices Society. 2020. 8. P. 545.
https://doi.org/10.1109/JEDS.2020.2991121