Semiconductor Physics, Quantum Electronics & Optoelectronics, 24 (1), P. 48-55 (2021).
DOI: https://doi.org/10.15407/spqeo24.01.048
References
1. Fleischmann M., Hendra P., McQuillan A. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974. 26. P. 163-166.
https://doi.org/10.1016/0009-2614(74)85388-1
2. Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985. 57. P. 783-826.
https://doi.org/10.1103/RevModPhys.57.783
3. Demirel G., Usta H., Yilmaz M. et al. Surface- enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C. 2018. 6, Issue 20. P. 5314-5335.
https://doi.org/10.1039/C8TC01168K
4. Schlucker S. Surface-enhanced Raman spectro- scopy: concepts and chemical applications. Angew. Chem. Int. Ed. 2014. 53. P. 4756-4795.
https://doi.org/10.1002/anie.201205748
5. Ding S.Y., Yi J., Li J.F. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016. 1. P. 1-16.
https://doi.org/10.1038/natrevmats.2016.36
6. Wang A.X., Kong X. Review of recent progress of plasmonic materials and nanostructures for surface- enhanced Raman scattering. Materials. 2015. 8, N 6. P. 3024-3052.
https://doi.org/10.3390/ma8063024
7. McNay G., Eustace D., Smith W.E., Faulds K., Graham D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications. Appl. Spectrosc. 2011. 65. P. 825-837.
https://doi.org/10.1366/11-06365
8. Nie S., Emory S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997. 275. P. 1102-1106.
https://doi.org/10.1126/science.275.5303.1102
9. Kneipp K., Wang Y., Kneipp H. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997. 78. P. 1667.
https://doi.org/10.1103/PhysRevLett.78.1667
10. Sharma B., Frontiera R.R., Henry A.I., Ringe E., van Duyne R.P. SERS: Materials, applications, and the future. Mater. Today. 2012. 15, No 1-2. P. 16- 25.
https://doi.org/10.1016/S1369-7021(12)70017-2
11. Wei H., Xu H.X. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale. 2013. 5, No 22. P. 10794- 10805.
https://doi.org/10.1039/c3nr02924g
12. Banholzer M.J., Millstone J.E., Qin L.D., Mirkin C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008. 37. P. 885-897.
https://doi.org/10.1039/b710915f
13. Fan M.K., Andrade G.F.S., Brolo A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta. 2011. 693, No 1-2. P. 7-25.
https://doi.org/10.1016/j.aca.2011.03.002
14. Yue W., Wang Z., Yang Y., Chen, L., Syed A., Wong K., Wang X. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J. Micromech. Microeng. 2012. 22, No 12. P. 125007.
https://doi.org/10.1088/0960-1317/22/12/125007
15. Lin Y.Y., Liao J.D., Ju Y.H., Chang C.W., Shiau A.L. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology. 2011. 22, No 18. P. 185308.
https://doi.org/10.1088/0957-4484/22/18/185308
16. Barbillon G., Hamouda F., Held S., Gogol P., Bartenlian B. Gold nanoparticles by soft UV nanoimprint lithography coupled to a lift-off process for plasmonic sensing of antibodies. Microelectron. Eng. 2010. 87. P. 1001-1004.
https://doi.org/10.1016/j.mee.2009.11.114
17. Mandal P., Gupta P., Nandi A., Ramakrishna S.A. Surface enhanced fluorescence and imaging with plasmon near-fields in gold corrugated gratings. J. Nanophotonics. 2012. 6, No 1. P. 063527.
https://doi.org/10.1117/1.JNP.6.063527
18. Dan'ko V., Indutnyi I., Min'ko V., Shepelyavyi P. Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectronics Instrum. Data Process. 2010. 46, No 3. P. 483-490.
https://doi.org/10.3103/S8756699011050116
19. Dan'ko V., Dmitruk M., Indutnyi I. et al. Fabrication of periodic plasmonic structures using interference lithography and chalcogenide photoresist. Nanoscale Res. Lett. 2015. 10. P. 497.
https://doi.org/10.1186/s11671-015-1203-x
20. Arzumanyan G., Doroshkevich N., Mamatkulov K. et al. Phospholipid detection by surface-enhanced Raman scattering using silvered porous silicon substrates. phys. status solidi (a). 2017. 214, No 8. P. 1600915.
https://doi.org/10.1002/pssa.201600915
21. Kelf T.A., Sugawara Y., Cole R.M., Baumberg J.J. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B. 2006. 74, No 24. P. 245415.
https://doi.org/10.1103/PhysRevB.74.245415
22. Indutnyi I.Z., Dan'ko V.A., Myn'ko V.I. et al. Spatial frequency doubling of interference lithographic structure using two-layer chalcogenide photoresist. J. Optoelectron. Adv. Mater. 2011. 13, No. 11-12. P. 1467-1469.
| |
|
|