Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (1) P. 010-018 (2022).
DOI: https://doi.org/10.15407/spqeo25.01.010
References
1. de Abajo F.J.G. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010. 82. P. 209-275.
https://doi.org/10.1103/RevModPhys.82.209
2. Bashevoy M.V., Jonsson F., Krasavin A.V. et al. Generation of traveling surface plasmon waves by free - electron impact. Nano Lett. 2006. 6. P. 1113-1115.
https://doi.org/10.1021/nl060941v
3. Cai W., Sainidou R., Xu J., Polman A., and de Abajo F.J.G. Efficient generation of propagating plasmons by electron beams. Nano Lett. 2009. 9. P. 1176-1181..
https://doi.org/10.1021/nl803825n
4. Milton K.A., Li Y., Guo X., Kennedy G. Electro-dynamic friction of a charged particle passing a con-ducting plate. Phys. Rev. Res. 2020. 2. P. 023114.
https://doi.org/10.1103/PhysRevResearch.2.023114
5. Fano U. A theory on cathode luminescence. Phys. Rev. 1940. 58. P. 544.
https://doi.org/10.1103/PhysRev.58.544
6. Sugita A., Kamiya M., Morita C. et al. Nanometric light spots of cathode luminescence in Y2O3:Eu3+ phosphor thin films excited by focused electron beams as ultra-small illumination source for high-resolution optical microscope. Opt. Mater. Exp. 2014. 4. P. 155-161.
https://doi.org/10.1364/OME.4.000155
7. Zhan J., Mu H., Zhang G., Huang X., Shao X., and Deng J. Cathode-like luminescence from vacuum-dielectric interface induced by self-stabilizing secondary electron emission. Appl. Phys. Lett. 2012. 101. P. 041604.
https://doi.org/10.1063/1.4738999
8. Neubauer, A., Yochelis S., Popov I. et al. Local cathode luminescence resonant peak in hybrid organic nanocrystal systems. J. Phys. Chem. C. 2012. 116. P. 15641-15645.
https://doi.org/10.1021/jp212198j
9. Liu S., Zhang P., Liu W. et al. Surface polariton Cherenkov light radiation source. Phys. Rev. Lett. 2012. 109. P. 153902.
https://doi.org/10.1103/PhysRevLett.109.153902
10. Liu S., Zhang C., Hu M. et al. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam. Appl. Phys. Lett. 2014. 104. P. 201104.
https://doi.org/10.1063/1.4879017
11. Gong S., Hu M., Zhong R. et al. Electron beam excitation of surface plasmon polaritons. Opt. Exp. 2014. 22. P. 19252-19261.
https://doi.org/10.1364/OE.22.019252
12. Li R.K., To H., Andonian G. et al. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured cop- per cathode. Appl. Phys. Lett. 2013. 110. P. 074801..
https://doi.org/10.1103/PhysRevLett.110.074801
13. Homola J., Yee S.S., and Gauglitz G. Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 1999. 54. P. 3-15.
https://doi.org/10.1016/S0925-4005(98)00321-9
14. Davidovich M.V. Amplification of optical and THZ surface plasmon-polaritons by electron beams. Saratov Fall Meeting 2018: Laser Physics, Photonic Technologies, and Molecular Modeling. 2018. 11066. P. 1106614.
https://doi.org/10.1117/12.2521234
15. Durham D.B., Pierce C.M., Riminucci F. et al. Characterizing plasmon-enhanced photoemitters for bright ultrafast electron beams. Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX, International Society for Optics and Photonics. 2021. 11797. P. 117972D.
https://doi.org/10.1117/12.2597708
16. de Abajov G., Javierb F., and Di Giulio V. Optical excitations with electron beams: Challenges and opportunities. ACS Photonics. 2021. 8. P. 945-974.
https://doi.org/10.1021/acsphotonics.0c01950
17. Knoll G.F. Radiation Detection and Measurement (3rd ed.). Wiley, 1999.
18. Durrani S.A., and Bull R.K. Solid State Nuclear Track Detection: Principles, Methods and Applications. 111. Elsevier, 2013.
19. Cenna F., Cartiglia N., Friedl M. et al. Weightfield2: A fast simulator for silicon and diamond solid state detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.2015. 796. P. 149-153.
https://doi.org/10.1016/j.nima.2015.04.015
20. Boyer T.H. Penetration of the electric and magnetic velocity fields of a nonrelativistic point charge into a conducting plane. Phys. Rev. A. 1974. 9. P. 68-82..
https://doi.org/10.1103/PhysRevA.9.68
21. Bashevoy M.V., Jonsson F., Macdonald K.F. et al. Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution. Opt. Exp. 2007. 15. P. 11313-11320.
https://doi.org/10.1364/OE.15.011313
22. Kyrychenko O.L. On the influence of the density of laser beam energy on the sensitivity of explosive substances to laser radiation. Scientific Bulletin of National Mining University. 2018. 6.
https://doi.org/10.29202/nvngu/2018/7
23. Krasnov A.A. and Legotin S.A. Advances in the development of betavoltaic power sources (A review). Instruments and Experimental Techniques. 2020. 63, No 4. P. 437-452.
https://doi.org/10.1134/S0020441220040156
24. Olsen L.C. Review of betavoltaic energy conversion. NASA Conf. Publ. 1993. P. 256-256.
25. Maximenko S.I., Moore J.E., Affouda C.A., and Jenkins P.P. Optimal semiconductors for 3 H and 63 Ni betavoltaics. Sci. Repts. 2019. 9. P. 1-8
https://doi.org/10.1038/s41598-019-47371-6
26. Heuser T., Braun M., McIntyre P., and Senesky D.G. Electron beam irradiation of gallium nitride-on-silicon betavoltaics fabricated with a triple mesa etch. J. Appl. Phys. 2021. 130, No 17. P. 174503.
https://doi.org/10.1063/5.0069602
27. Anselm À.I. Introduction to Semiconductor Theory: A Study Guide. St.-Petersburg: Lan. 2017.
28. Lyaschuck Yu.M., Koroteev V.V. Plasmon-enhanced infrared absorption in a thin InSb layer. Lashkaryov readings, 2019. V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine.
29. Degheidy A.R., Elkenany E.B., Madkour M.A.K., Abuali A.M. Temperature dependence of phonons and related crystal properties in InAs, InP and InSb zinc-blende binary compounds. Computational Condensed Matter. 2018. 16. P. e00308.
https://doi.org/10.1016/j.cocom.2018.e00308
30. Landau L.D., Lifshitz E.M., Pitaevskii L.P. Electrodynamics of Continuous Media. Second Edition. Butterworth-Heinemann, 1984.
https://doi.org/10.1016/B978-0-08-030275-1.50007-2
31. Guo H. and Lal A. Nanopower betavoltaic micro-batteries. TRANSDUCERS'03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664). 2003. 1. P. 36-39.
32. Yakimov E.B. Prediction of betavoltaic battery output parameters based on SEM measurements and Monte Carlo simulation. Applied Radiation and Isotopes. 2016. 112. P. 98-102.
https://doi.org/10.1016/j.apradiso.2016.03.023
33. Thomas C., Portnoff S., and Spencer M.G. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes. Appl. Phys. Lett. 2016. 108. P. 013505.
https://doi.org/10.1063/1.4939203
34. Tomassone M.S. and Widom A. Electronic friction forces on molecules moving near metals. Phys. Rev. B. 1997. 56. P. 4938-4943.
https://doi.org/10.1103/PhysRevB.56.4938
| |
|
|