Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (1) P. 058-067 (2022).
DOI: https://doi.org/10.15407/spqeo25.01.058
References
1. Hochbaum A.I., Fan R., He R., Yang P. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005. 5, Issue 3. Ð. 457-460.
https://doi.org/10.1021/nl047990x
2. Song T., Lee S.-T., Sun B. Silicon nanowires for photovoltaic applications: The progress and challenge. Nano Energy. 2012. 1, Issue 5. P. 654-673.
https://doi.org/10.1016/j.nanoen.2012.07.023
3. Charrier J., Najar A., Pirasteh P. Study of optical absorbance in porous silicon nanowires for photovoltaic applications. Appl. Surf. Sci. 2013. 283. P. 828-832.
https://doi.org/10.1016/j.apsusc.2013.07.026
4. Miranda A., Santiago F., Perez L.A., Cruz-Irisson M. Silicon nanowires as potential gas sensors: A density functional study. Sensors and Actuators B. 2017. 242. P. 1246-1250.
https://doi.org/10.1016/j.snb.2016.09.085
5. Chen S., Berg A., Carlen E.T. Sensitivity and detection limit analysis of silicon nanowire bio(chemical) sensors. Sensors and Actuators B. 2015. 209. P. 486-489.
https://doi.org/10.1016/j.snb.2014.12.007
6. Canevali C., Alia M., Fanciulli M., Longo M., Ruffo R., Mariab C.M. In?uence of doping elements on the formation rate of silicon nanowires by silver-assisted chemical etching. Surface & Coatings Technology. 2015. 280. P. 37-42.
https://doi.org/10.1016/j.surfcoat.2015.08.013
7. Abdur-Rahman E., Alghoraibi I., Alkurdi H. Effect of isopropyl alcohol concentration and etching time on wet chemical anisotropic etching of low-resistivity crystalline silicon wafer. Int. J. Anal. Chem. 2017. 2017. P. 1-9.
https://doi.org/10.1155/2017/7542870
8. Amri C., Ouertani R., Hamdi A., Ezzaouia H. Effect of silver-assisted chemical vapor etching on morphological properties and silicon solar cell performance. Materials Science in Semiconductor Processing. 2017. 63. P. 176-183.
https://doi.org/10.1016/j.mssp.2017.02.019
9. Lee Y., Kim H., Hussain S.Q. et al. Study of metal assisted anisotropic chemical etching of silicon for high aspect ratio in crystalline silicon solar cells. Materials Science in Semiconductor Processing. 2015. 40. P. 391-396.
https://doi.org/10.1016/j.mssp.2015.07.011
10. Ghafarinazari A., Mozafari M.A. Systematic study on metal-assisted chemical etching of high aspect ratio silicon nanostructures. Journal of Alloys and Compounds. 2014. 616. P. 442-448.
https://doi.org/10.1016/j.jallcom.2014.07.044
11. Smith Z.R., Smith R.L., Collins S.D. Mechanism of nanowire formation in metal assisted chemical etching. Electrochimica Acta. 2013. 92. P. 139-147.
https://doi.org/10.1016/j.electacta.2012.12.075
12. Bachtouli N., Aouida S., Bessais B. Formation mechanism of porous silicon nanowires in HF/AgNO3 solution. Microporous and Mesoporous Materials. 2014. 187. P. 82-85.
https://doi.org/10.1016/j.micromeso.2013.11.048
13. Tsujino K., Matsumura M. Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochimica Acta. 2007. 53, P. 28-34.
https://doi.org/10.1016/j.electacta.2007.01.035
14. Kato Yu., Adachi S. Fabrication and optical characterization of Si nanowires formed by catalytic chemical etching in Ag2O/HF solution. Appl. Surf. Sci. 2012. 258, Issue 15. P. 5689-5697.
https://doi.org/10.1016/j.apsusc.2012.02.063
15. Lajvardi M., Eshghi H., Izadifard M., Ghazi M.E., Goodarzi A. Effects of silver and gold catalytic activities on the structural and optical properties of silicon nanowires. Physica E. 2016. 75. P. 136-143.
https://doi.org/10.1016/j.physe.2015.09.007
16. Cichoszewski J., Reuter M., Schwerdt F., Werner J.H. Role of catalyst concentration on metal assisted chemical etching of silicon. Electrochimica Acta. 2013. 109. P. 333-339.
https://doi.org/10.1016/j.electacta.2013.07.079
17. Backes A., Bittner A., Leitgeb M., Schmid U. In?uence of metallic catalyst and doping level on the metal assisted chemical etching of silicon. Scripta Materialia. 2016. 114. P. 27-30.
https://doi.org/10.1016/j.scriptamat.2015.11.014
18. Romano L., Vila-Comamala J., Jefimovs K., Stampanoni M. Effect of isopropanol on gold assisted chemical etching of silicon microstructures. Microelectronic Engineering. 2017. 177. P. 59-65.
https://doi.org/10.1016/j.mee.2017.02.008
19. Sahoo M.K., Kale P.G. Micro-Raman study of growth parameter restraint for silicon nanowire synthesis using MACE. Superlattices and Microstructures. 2019. 135. P. 106289.
https://doi.org/10.1016/j.spmi.2019.106289
20. Singh N., Sahoo M.K., Kale P.G. Effect of MACE parameters on length of porous silicon nanowires (PSiNWs). J. Cryst. Growth. 2018. 496-497. P. 10-14.
https://doi.org/10.1016/j.jcrysgro.2018.05.019
21. Han H., Huang Z., Lee W. Metal-assisted chemical etching of silicon and nanotechnology application. Nano Today. 2014. 9, Issue 3. P. 271-304.
https://doi.org/10.1016/j.nantod.2014.04.013
22. Chartier C., Bastide S., Levy-Clement C. Metal-assisted wet chemical etching of crystalline silicon. Proc. 22nd Europ. Photovoltaic Solar Energy Conf. 3-7 September 2007. Milan, Italy. P. 1231-1234.
23. Toor F., Miller J.B., Davidson L. M., Nichols L. Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering. Nanotechnology. 2016. 27. P. 412003.
https://doi.org/10.1088/0957-4484/27/41/412003
24. Huang Z., Zhang X., Reiche M. et al. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett. 2008. 8, Issue 9. P. 3045-3051.
https://doi.org/10.1021/nl802324y
25. Megouda N., Hadjersi T., Szunerits S., Boukherroub R. Electroless chemical etching of silicon in aqueous NH4F/AgNO3/HNO3 solution. Appl. Surf. Sci. 2013. 284. P. 894-899.
https://doi.org/10.1016/j.apsusc.2013.08.033
26. Rabha M. B., Khezami L., Jemai A.B. et al. Surface passivation of silicon nanowires based metal nano-particle assisted chemical etching for photovoltaic applications. J. Cryst. Growth. 2017. 462. P. 35-40.
https://doi.org/10.1016/j.jcrysgro.2017.01.021
27. Cao Y., Zhou Y., Liuz F. et al. Progress and mechanism of Cu assisted chemical etching of silicon in a low Cu2+ concentration region. ECS J. Solid State Sci. Technol. 2015. 4, ²ssue 8. P. 331-336.
https://doi.org/10.1149/2.0191508jss
28. Obukhova T., Dusheiko M., Tymoshenko O., Chubenko Y. Resistor-like porous silicon glucose sensor with silver nanoparticles. Int. Journal of Electrical, Electronics and Data Communication (IJEEDC). 2019. 7, No 9. P. 1-3.
29. Basu D., Sarkar T., Sen K., Hossain S. M., Das J. Multi-parametric optical glucose sensor based on surface functionalized nano-porous silicon. IEEE Sensors J. 2018. 18, Issue 24. P. 9940-9947.
https://doi.org/10.1109/JSEN.2018.2872846
30. Ensafi A.A., Abarghoui M.M., Rezaei B. A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochimica Acta. 2014. 123. P. 219-226.
https://doi.org/10.1016/j.electacta.2014.01.031
31. Ray S., Ghosh S., Ghosh H. et al. Fabrication of nanowire on micro textured crystalline silicon wafer before and after diffusion process: A comparative study of solar cell performance. Materials Today: Proc. 2017. 4. P. 12678-12683.
https://doi.org/10.1016/j.matpr.2017.10.082
| |
|
|