Semiconductor Physics, Quantum Electronics and Optoelectronics, 25 (1) P. 108-112 (2022).
DOI: https://doi.org/10.15407/spqeo25.01.108


References

1. Kendall D.L. Vertical etching of silicon at very high aspect ratios. Ann. Rev. Mater. Sci. 1979. 9. P. 373-403. https://doi.org/10.1146/annurev.ms.09.080179.002105

2. Bassu M., Surdo S., Strambini L.M., Barillaro G. Electrochemical micromachining as an enabling technology for advanced silicon microstructuring. Adv. Funct. Mater. 2012. 22. P. 1222-1228. https://doi.org/10.1002/adfm.201102124

3. Bru D.V. and Martinez A.R. Macroporous Silicon: Technology and Applications, Chap.7 in: New Research on Silicon - Structure, Properties, Technology, in Norderstedt: Books on Demand. 2017. P. 155-182.. https://doi.org/10.5772/67698

4. Marchetti R., Lacava C., Carroll L., Gradkowski K., Minzioni P. Coupling strategies for silicon photonics integrated chips. Photon. Res. 2019. 7, No 2. P. 201-239. https://doi.org/10.1364/PRJ.7.000201

5. Surdo S., Merlo S., Carpignano F., Strambini L.M., Trono C., Giannetti A., Baldini F., Barillaro G. Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. Lab Chip. 2012. 12. P. 4403-4415. https://doi.org/10.1039/c2lc40613f

6. Han L. 1D Photonic Crystals: Principles and Applications in Silicon Photonics, Chap. 8 in: Theoretical Foundations and Application of Photonic Crystals. 2018. P. 159-180. https://doi.org/10.5772/intechopen.71753

7. Sizov F.F. Infrared detectors: outlook and means. SPQEO. 2000. 3, No. 1. P. 52-58. https://doi.org/10.15407/spqeo3.01.052

8. Kinch M.A. State-of-the-art Infrared Detector Technology. SPIE Press, Washington, 2014. https://doi.org/10.1117/3.1002766

9. Martyniuk P., Antoszewski J., Martyniuk M., Faraone L., Rogalski A. New concepts in infrared photodetector designs. Appl. Phys. Rev. 2014. 1. P. 041102-1-041102-35. https://doi.org/10.1063/1.4896193

10. Sizov F.F. Brief history of THz and IR technologies. SPQEO. 2019. 22, No. 1. P. 67-79. https://doi.org/10.15407/spqeo22.01.067

11. Niklaus F., Vieider C., Jakobsen H. MEMS-based uncooled infrared bolometer arrays. Proc. SPIE. 2008. 6836. P. 68360D-1-15. https://doi.org/10.1117/12.755128

12. Wang P., Xia H., Li Q., Wang F., Zhang L., Li T., Martyniuk P., Rogalski A., Hu W. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small. 2019. 15, No 46. P. 1904396(1-22). https://doi.org/10.1002/smll.201904396

13. L.A. Karachevtseva, F.F. Sizov, Yu.V. Goltvyanskiy, K.P. Konin, O.Y. Stronska, K.A. Parshin, O.O. Litvinenko. Uncooled heat-receiving element for bolometers. Patent of Ukraine, No 80345. IPC6 G01J 5/20, H01L 31/02. No à200511998, 14.12.2005. Publ. 10.09.2007. Bul. No 14.

14. Johnson E.G., Christodoulou C.G. Electromagnetic scattering from aperiodic strip gratings. Journal of Electromagnetic Waves and Applications. 1992. 6, No 2. P. 219-234. https://doi.org/10.1163/156939392X01129

15. Senechal M. Crystals, Periodic and Aperiodic, Chap. 64 in: Handbook of Discrete and Computational Geometry, ed. by J.E. Goodman, J. O'Rourke, and C.D. Toth. CRC Press LLC, Boca Raton, FL, 2017. P. 1695-1708.

16. Konin K.P., Gudymenko O.Yo., Kladko V.P., Lytvynenko O.O., Morozovska D.V. Generation and auto-revealing of dislocations in Si during macropore etching. J. Electron. Mater. 2018. 47. P. 5113-5117. https://doi.org/10.1007/s11664-018-6502-4

17. Vaniurikhin A., Gerchanovska V. Optoelectronic Polarization Devices. Kiev, 2012. P. 50-52.

18. Utility Model Patent of Ukraine No 141753, CI (2020.01) F21V 29/00. V.M. Sorokin, D.V. Pekur, Yu.E. Nikolaenko, LED luminaire. u2019 10273, 09.10.2019. Publ. 27.04.2020. Bul. No 8.