Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 005-016 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.005


References

1. Sai H., Oku T., Sato Y. et al. Potential of very thin and high efficiency silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 2019. 27. P. 1061–1070. https://doi.org/10.1002/pip.3181.

2. Wafer ray tracer version 1.6.7. https:// www2.pvlighthouse.com.au/calculators. Publ. 2015.

3. Sachenko A.V., Kostylyov V.P., Sokolovsky I.O., Evstigneev M. Effect of temperature on limit photoconversion efficiency in silicon solar cells. IEEE J. Photovolt. 2020. 10, No 1. P. 63–69. https://doi.org/10.1109/JPHOTOV.2019.2949418.

4. Sachenko A.V., Kostylyov V.P., Bobyl A.V. et al. The effect of base thickness on photoconversion efficiency in textured silicon-based solar cells. Tech. Phys. Lett. 2018. 44, No 10. P. 873–876. https://doi.org/10.1134/S1063785018100139.

5. Sachenko A.V., Kostylyov V.P., Vlasyuk V.M. et al. The influence of the exciton nonradiative recombination in silicon on the photoconversion efficiency. Proc. 32 European Photovoltaic Solar Energy Conf. and Exhib., Germany, Munich, 20–24 June, 2016. Ð. 141–147. https://doi.org/ 10.4229/EUPVSEC20162016-1BV.5.14.

6. Sachenko A.V., Kostylyov V.P., Vlasiuk V.M. et al. Features in the formation of recombination current in the space charge region of silicon solar cells. Ukr. J. Phys. 2016. 61, No 10. P. 917–922. https://doi.org/10.15407/ujpe61.10.0917.

7. Sachenko A.V., Kostylyov V.P., Sokolovsky I.O. Specific features of current flow in ?-Si:H/Si heterojunction solar cells. Tech. Phys. Lett. 2017. 43. P. 152–155. https://doi.org/10.1134/S1063785017020109.

8. McIntosh K.R. and Baker-Finch S.C. A paramete-rization of light trapping in wafer-based solar cells. IEEE J. Photovolt. 2015. 5, No 6. P. 1563–1570. https://doi.org/10.1109/JPHOTOV.2015.2465175.

9. Fell A., McIntosh K.R. and Fong K.C. Simplified device simulation of silicon solar cells using a lumped parameter optical model. IEEE J. Photovolt. 2016. 6, No. 3. P. 611–616. https://doi.org/10.1109/JPHOTOV.2016.2528407.

10. Tiedje T., Yablonovitch E., Cody G.D. and Brooks B.J. Limiting efficiency of silicon solar cells. IEEE Trans. Electron. Devices. 1984. ED31, No 5. P. 711–716. https://doi.org/10.1109/T-ED.1984.21594.

11. Green M.A. Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions. Prog. Photovolt.: Res. Appl. 2002. 10, No 4. P. 235–241. https://doi.org/10.1002/pip.404.

12. Hangleiter A. Nonradiative recombination via deep impurity levels in silicon: Experiment. Phys. Rev. B. 1987. 35, No 17. P. 9149–9161. https://doi.org/10.1103/physrevb.35.9149.

13. Hangleiter A. Nonradiative recombination via deep impurity levels in semiconductors: The excitonic Auger mechanism. Phys. Rev. B. 1988. 37, No 5. P. 2594–2604.

14. Fossum J.G. Solid State Electron. Computer-aided numerical analysis of silicon solar cells. 1976. 19, No 4. P. 269–277. https://doi.org/10.1016/0038-1101(76)90022-8.

15. Abakumov V.N., Perel V.I., Yassievich I.N. Nonradiative Recombination in Semiconductors. Elsevier Science, 1991.

16. Richter A., Glunz S.W., Werner F. et al. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B. 2012. 86. P. 165202. https://doi.org/10.1103/PhysRevB.86.165202.

17. Richter A., Hermle M., Glunz S.W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 2013. 3. P. 1185–1191. https://doi.org/10.1109/JPHOTOV.2013.2270351.

18. Richter A., Benick J., Feldmann F. et al. n-type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells. 2017. 173. P. 96–105. https://doi.org/10.1016/j.solmat.2017.05.042.

19. Yoshikawa K., Yoshida W., Irie T. et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thinfilm Si technology. Sol. Energy Mater. Sol. Cells. 2017. 173. P. 37–42. https://doi.org/10.1016/j.solmat.2017.06.024.

20. Dauwe S. Low-temperature surface passivation of crystalline silicon and its application to the rear side of solar cells. PhD thesis, Universitat Hannover, 2004.

21. Veith-Wolf B.A. Crystalline silicon surface passivation using aluminum oxide: Fundamental understanding and application to solar cell. PhD thesis, Universitat Hannover, 2018.

22. Gorban À.P., Sachenko A.V., Kostylyov V.P. and Prima N.A. Effect of excitons on photoconversion efficiency in the p+-n-n+ and n+-p-p+ structures based on single-crystalline silicon. SPQEO. 2000. 3, No 3. P. 322–329. https://doi.org/10.15407/spqeo3.03.322.

23. Schenk A. Finite-temperature full random-phase approximation mode of band gap narrowing for silicon device simulation. J. Appl. Phys. 1998. 84. P. 3684–3695. https://doi.org/10.1063/1.368545.

24. Sproul A.B. and Green M.A. Intrinsic carrier concentration and minority-carrier mobility of silicon from 77 to 300 K. J. Appl. Phys. 1993. 73. P. 1214. https://doi.org/10.1063/1.353288.