Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 030-035 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.030


References

1. Langpoklakpam C., Liu A.-C., Chu K.-H. et al. Review of silicon carbide processing for power MOSFET. Crystals. 2022. 12. P. 245. https://doi.org/10.3390/cryst12020245 .

2. Kimoto T. High-voltage SIC power devices for improved energy efficiency. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2022. 98. P. 161–189. https://doi.org/10.2183/pjab.98.011 .

3. Ou Y., Jokubavicius V., Linnarsson M. et al. Characterization of donor–acceptor-pair emission in fluorescent 6H-SiC. Phys. Scr. 2012. T148. P. 014003. https://doi.org/10.1088/0031-8949/2012/t148/014003 .

4. Lee W.P., Choi E.S., Park E.B. et al. Microwave conductivity of alkali-metal doped polyacetylene. Synth. Met. 1995. 69. P. 75–76. https://doi.org/10.1016/0379-6779(94)02370-e .

5. Buravov L.I., Schegolev I.F. Method of conductivity measurement on small crystals at frequency 1010 Hz. Instrum. Exp. Tech. 1971. 14. P. 528–531. .

6. Gunning W.J., Khanna S.K., Garito A.F., Heeger A.J. Temperature dependent microwave dielectric constant of TTF-TCNQ and related one-dimensional conductors. Solid State Commun. 1977. 21. P. 765–770. https://doi.org/10.1016/0038-1098(77)91148-6 .

7. Javadi H.H., Cromack K.R., MacDiarmid A.G., Epstein A.J. Microwave transport in the Emeraldine form of polyaniline. Phys. Rev. B. 1989. 39. P. 3579–3584. https://doi.org/10.1103/physrevb.39.3579 .

8. Rabenau T., Simon A., Kremer R.K., Sohmen E. The energy gaps of fullerene C60 and C70 determined from the temperature dependent microwave conductivity. Zeitschrift fur Physik B. Condensed Matter. 1993. 90. P. 69–72. https://doi.org/10.1007/bf01321034 .

9. Poirier M., Seguin P.-E. Microwave conductivity of p-type InSb at low temperatures. Can. J. Phys. 1986. 64. P. 546–548. https://doi.org/10.1139/p86-102 .

10. Bauhofer W. Determination of semiconductor energy gaps using the microwave cavity perturbation method. J. Phys. E: Sci. Inst. 1981. 14. P. 934–938. https://doi.org/10.1088/0022-3735/14/8/011 .

11. Godlewski M. Microwave conductivity measure-ments in CdTe. phys. status solidi (a). 1979. 51. P. K141–K145. https://doi.org/10.1515/9783112497623-055 .

12. Shchegolev I.F. Electric and magnetic properties of linear conducting chains. phys. status solidi (a). 1972. 12. P. 9–45. https://doi.org/10.1002/pssa.2210120102 .

13. Khanna S.K., Ehrenfreund E., Garito A.F., Heeger A.J. Microwave properties of high-purity tetrathiofulvalene-tetracyanoquinodimethan (TTF-TCNQ). Phys. Rev. B. 1974. 10. P. 2205–2220. https://doi.org/10.1103/physrevb.10.2205 .

14. Savchenko D.V. The electron spin resonance study of heavily nitrogen doped 6H SiC crystals. J. Appl. Phys. 2015. 117. P. 045708. https://doi.org/10.1063/1.4906618 .

15. Tairov Yu.M., Tsvetkov V.F. Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth. 1978. 43. P. 209–212. https://doi.org/10.1016/0022-0248(78)90169-0

16. Murthy V.R.K. Methods of measurement of dielectric constant and loss in the microwave frequency region. In: Microwave Materials. Eds S. Sundaram, B. Viswanathan, V.R.K. Murthy. Springer Verlag: Berlin, Germany, 1994. P. 100–111. https://doi.org/10.1007/978-3-662-08740-4_4 .

17. Ong N.P. Microwave cavity-perturbation equations in the skin-depth regime. J. Appl. Phys. 1977. 48. P. 2935–2940. https://doi.org/10.1063/1.324105 .

18. Mott N.F., Twose W.D. The theory of impurity conduction. Adv. Phys. 1961. 10. P. 107–163. https://doi.org/10.1080/00018736100101271 .

19. Mott N.F. Conduction in glasses containing transi-tion metal ions. J. Non-Cryst. Solids. 1968. 1. P. 1–17. https://doi.org/10.1016/0022-3093(68)90002-1 .

20. Poklonskij N.A. Ionization Equilibrium and Hopping Conductivity in Doped Semiconductors. Belarus. Gos. Univ.: Minsk, Belarus, 2004 (in Russian). .

21. Mitchel W.C., Evwaeaye A.O., Smith S.R., Roth M.D. Hopping conduction in heavily doped bulk n-type SiC. J. Electron. Mater. 1997. 26. P. 113–118. https://doi.org/10.1007/s11664-997-0135-3 .

22. Van Mieghem P. Theory of band tails in heavily doped semiconductors. Rev. Mod. Phys. 1992. 64. P. 755–793. https://doi.org/10.1103/revmodphys.64.755 .