Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 049-058 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.049
References
1. Langer J., de Aberasturi D.J., Aizpurua J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020. 14. P. 28117. https://doi.org/10.1021/acsnano.9b04224 .
2. Kang J.W., Park Yu.S., Chang H. et al. Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Sci. Adv. 2020. 6. P. 5206. https://doi.org/10.1126/sciadv.aay5206 .
3. Botta R., Rajanikanth A., Bansal C. Silver nanocluster films for glucose sensing by Surface Enhanced Ra-man Scattering (SERS). Sens. Bio-Sens. Res. 2016. 9. P. 1316. https://doi.org/10.1016/j.sbsr.2016.05.001 .
4. Jeong J., Arnob M., Baek K. et al. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv. Mater. 2016. 28. P. 39. https://doi.org/10.1002/adma.201602603 .
5. Fikiet M., Khandasammy S., Mistek E. et al. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018. 197. P. 255260. https://doi.org/10.1016/j.saa.2018.02.046 .
6. Bernat A., Samiwala M., Albo J. et al. Challenges in SERS-based pesticide detection and plausible solutions. J. Agric. Food Chem. 2019. 67. P. 1234112347. https://doi.org/10.1021/acs.jafc.9b05077 .
7. Du Z., Qi Y., He J., Zhong D., Zhou M. Recent advances in applications of nanoparticles in SERS in vivo imaging. WIREs Nanomed Nanobiotechnol. 2020. P. e1672. https://doi.org/10.1002/wnan.1672 .
8. Song D., Yang R., Long F., Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J. Environ. Sci. 2019. 80. P. 1434. https://doi.org/10.1016/j.jes.2018.07.004 .
9. Chen K., Leona M., Vo-Dinh K. et al. Application of surface-enhanced Raman scattering (SERS) for the identification of an thraquinone dyes used in works of art. J. Raman Spectrosc. 2006. 37. P. 520527. https://doi.org/10.1002/jrs.1426 .
10. Milekhin A.G., Yeryukov N.A., Sveshnikova L.L. et al. Raman scattering for probing semiconductor nanocrystal arrays with a low areal density. J. Phys. Chem. C. 2012. 116. P. 1716417168. https://doi.org/10.1021/jp210720v. .
11. Milekhin A., Sveshnikova L., Duda T. et al. Surface- enhanced Raman scattering by colloidal CdSe nano-crystal submonolayers fabricated by the Langmuir-Blodgett technique. Beilstein J. Nanotechnol. 2015. 6. P. 23882395. https://doi.org/10.3762/bjnano.6.245 .
12. Sheremet E., Milekhin A.G., Rodriguez R.D. et al. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. Phys. Chem. Chem. Phys. 2015. 17. P. 2119821203. https://doi.org/10.1039/C4CP05087H .
13. Novikov S., Khriachtchev L. Surface-enhanced Raman scattering of silicon nanocrystals in a silica film. Scientific Reports. 2016. 6. P. 27027. https://doi.org/10.1038/srep27027 .
14. Ilie A., Durkan C., Milne W.I., Welland M.E. Surface enhanced Raman spectroscopy as a probe for local modification of carbon films. Phys. Rev. B. 2002. 66. P. 045412. https://doi.org/10.1103/PhysRevB.66.045412 .
15. Liu C.Y., Dvoynenko M.M., Lai M.Y. et al. Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO. Apl. Phys. Lett. 2010. 96. P. 033109. https://doi.org/10.1063/1.3291041 .
16. Muravitskaya A., Rumyantseva A., Kostcheev S. et al. Enhanced Raman scattering of ZnO nanocrystals in the vicinity of gold and silver nanostructured surfaces. Opt. Exp. 2016. 24. P. 168. https://doi.org/10.1364/OE.24.00A168 .
17. Yukhymchuk V.O., Hreshchuk O.M., Valakh M.Ya. et al. Design and characterization of nanostructured SERS substrates based on gold nanostars. SPQEO. 2017. 20. P. 4147. https://doi.org/10.15407/spqeo20.01.041 .
18. Yukhymchuk V.O., Hreshchuk O.M., Dzhagan V.M. et al. Experimental studies and modeling of starlike plasmonic nanostructures for SERS application. phys. status solidi (b). 2019. 256. P. 1800280. https://doi.org/10.1002/pssb.201800280 .
19. Dzhagan V., Smirnov O., Kovalenko M. et al. Spectroscopic study of phytosynthesized Ag nanoparticles and their activity as SERS substrate. Chemosensors. 2022. 10. P. 129. https://doi.org/10.3390/chemosensors10040129 .
20. Rubish V.M., Kyrylenko V.K., Durkot M.O. et al. Rapid formation methods of arrays of randomly distributed Au and Ag nanoparticles, their morphologies and optical characteristics. Phys. Chem. Solid State. 2021. 22. P. 804810. https://doi.org/10.15330/pcss.22.4.804-810 .
21. Azhniuk Yu.M., Bhandiwad P., Rubish V.M. et al. Photoinduced changes in the structure of As2S3-based SbSI nanocrystal containing composites studied by Raman spectroscopy. Ferroelectrics. 2011. 416. P. 113118. https://doi.org/10.1080/00150193.2011.577718 .
22. Solin S.A., Papatheodorou G.N. Irreversible thermostructural transformations in amorphous As2S3 films: A light-scattering study. Phys. Rev. B. 1977. 15, No 4. P. 20842090. https://doi.org/10.1103/PhysRevB.15.2084 .
23. Yannopoulos S.N., Andrikopoulos K.S., Kastrissios D.T., Papatheodorou G.N. Origin of photoinduced defects in glassy As2S3 under band gap illumination studied by Raman scattering: A revisory approach. phys. status solidi. 2012. 249. P. 20052012. https://doi.org/10.1002/pssb.201200385 .
24. Reznik A., Lui B.J.M., Rowlands J.A. et al. Kinetics of the photostructural changes in a-Se films. J. Appl. Phys. 2006. 100. P. 113506. https://doi.org/10.1063/1.2372316 .
25. Mamedov S., Georgiev D.G., Qu T., Boolchand P. Evidence for nanoscale phase separation of stressed-rigid glasses. J. Phys.: Condens. Matter. 2003. 15. P. S2397S2411. https://doi.org/10.1088/0953-8984/15/31/315 .
26. Petrov V.V., Kryuchyn A.A., Rubish V.M. Materials for Perspective Optoelectronic Devices. Naukova dumka, Kyiv, 2012.
27. Georgiev D.G., Boolchand P., Jackson K.A. Intrinsic nanoscale phase separation of bulk As2S3 glass. Phil. Mag. 2003. 83. P. 29412953. https://doi.org/10.1080/1478643031000151196 .
28. Azhniuk Yu.M., Lopushansky V.V., Gomonnai A.V. et al. Spectroscopic studies of thermal treatment effect on the composition and size of CdS1-xSex nanocrystals in borosilicate glass. J. Phys. Chem. Solids. 2008. 69. P. 139146. https://doi.org/10.1016/j.jpcs.2007.08.009 .
29. Nagels P., Sleeckx E., Callaerts R. Plasma-enhanced chemical vapour deposition of amorphous Se films. J. Phys. IV (Proc.). 1995. 05. P. C5-1109C5-1115. https://doi.org/10.1051/jphyscol:19955131 .
30. Stroyuk A.L., Raevskaya A.E., Kuchmiy S.Y. et al. Structural and optical characterization of colloidal Se nanoparticles prepared via the acidic decompo-sition of sodium selenosulfate. Colloids Surf. A Physicochem. Eng. Asp. 2008. 320, No 13. P. 169174. https://doi.org/10.1016/j.colsurfa.2008.01.055 .
31. Raevskaya A.E., Stroyuk A.L., Kuchmiy S.Y. et al. Annealing-induced structural transformation of gelatin-capped Se nanoparticles. Solid State Commun. 2008. 145. P. 288292. https://doi.org/10.1016/j.ssc.2007.11.003 .
32. Lucovsky G. Selenium, the Amorphous and Liquid States. In: Gerlach E., Grosse P. (eds). The Physics of Selenium and Tellurium. Springer Series in Solid-State Sciences. 1979. 13. P. 178192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/.978-3-642-81398-6_29 .
| |
|
|