Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 076-083 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.076


References

1. Sanjay M.R., Parameswaranpillai J., Yashas Gowda T.G., Siengchin S., Seydibeyoglu M.O. (Eds). Nanoparticle-Based Polymer Composites. Elsevier, Cambridge, Kidlington, 2022. https://doi.org/10.1016/C2020-0-01662-2 .

2. Khan I., Saeed K., Khan I. Nanoparticles: Proper-ties, applications and toxicities. Arab. J. Chem. 2019. 12, No 7. P. 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 .

3. Khodashenas B., Ghorbani H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 2019. 12, No 8. P. 1823–1838. https://doi.org/10.1016/j.arabjc.2014.12.014 .

4. Shkir M., Yahia I.S., Kilany M. et al. Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 2019. 45, No 1. P. 50–55. https://doi.org/10.1016/j.ceramint.2018.09.132 .

5. Abdel-Aziz M.S., Shaheen M.S., El-Nekeety A.A., Abdel-Wahhab M.A. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 2014. 18, No 4. P. 356–363. https://doi.org/10.1016/j.jscs.2013.09.011 .

6. Joudeh N., Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol. 2022. 20, No 1. P. 1–29. https://doi.org/10.1186/s12951-022-01477-8 .

7. Meikhail M.S., Abdelghany A.M., Aldhabi A.A. Preparation and characterization of silver and gold nanoparticles and study influence on physical properties of PVA/PVP nanocomposites. J. Adv. Phys. 2017. 13, No 1. P. 4628–4639. https://doi.org/10.24297/jap.v13i1.5626 .

8. Shao W., Li G., Zhu P. et al. Facile synthesis of low temperature sintering Ag nanopaticles for printed flexible electronics. J. Mater. Sci.: Mater. Electron. 2018. 29, No 6. P. 4432–4440. https://doi.org/10.1007/s10854-017-8390-4 .

9. Alkhalayfeh M.A., Aziz A.A., Pakhuruddin M.Z., Katubi K.M.M. Plasmonic effects of Au@Ag nanoparticles in buffer and active layers of polymer solar cells for efficiency enhancement. Materials. 2022. 15, No 16. P. 5472. https://doi.org/10.3390/ma15165472 .

10. Gharibshahi L., Saion E., Gharibshahi E. et al. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials. 2017. 10, No 4. P. 402. https://doi.org/10.3390/ma10040402 .

11. Quintero-Quiroz C., Acevedo N., Zapata-Giraldo J. et al. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater. Res. 2020. 23, No 1. P. 1–15. https://doi.org/10.1186/s40824-019-0173-y .

12. Huang M., Du L., Feng J.X. Photochemical synthesis of silver nanoparticles/eggshell membrane composite, its characterization and antibacterial activity. Sci. Adv. Mater. 2016. 8, No 8. P. 1641–1647. https://doi.org/10.1166/sam.2016.2777 .

13. Kuntyi O., Mazur A., Kytsya A. et al. Electro-chemical synthesis of silver nanoparticles in solutions of rhamnolipid. Micro & Nano Lett. 2020. 15, No 12. P. 802–807. https://doi.org/10.1049/mnl.2020.0195 .

14. Seku K., Gangapuram B.R., Pejjai B. et al. Microwave-assisted synthesis of silver nanopar-ticles and their application in catalytic, antibacterial and antioxidant activities. J. Nanostructure Chem. 2018. 8, No 2. P. 179–188. https://doi.org/10.1007/s40097-018-0264-7 .

15. Nouri A., Yaraki M.T., Lajevardi A., Rezaei Z., Ghorbanpour M., Tanzifi M. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid Interface Sci. Commun. 2020. 35. P. 100252. https://doi.org/10.1016/j.colcom.2020.100252 .

16. Fizer M.M., Mariychuk R.T., Fizer O.I. Gold nanoparticles green synthesis with clove oil: spectroscopic and theoretical study. Appl. Nanosci. 2022. 12, No 3. P. 611–620. https://doi.org/10.1007/s13204-021-01726-6 .

17. Widatalla H.A., Yassin L.F., Alrasheid A.A. et al. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 2022. 4, No 3. P. 911–915. https://doi.org/10.1039/D1NA00509J .

18. Alharbi N.S., Alsubhi N.S., Felimban A.I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J. Radiat. Res. Appl. Sci. 2022. 15, No 3. P. 109–124. https://doi.org/10.1016/j.jrras.2022.06.012 .

19. Bashir S.M., Rather G.A., Patricio A. et al. Chitosan nanoparticles: A versatile platform for biomedical applications. Mater. 2022. 15, No 19. P. 6521. https://doi.org/10.3390/ma15196521 .

20. Shariatinia Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019. 263. P. 131–194. https://doi.org/10.1016/j.cis.2018.11.008 .

21. El-hefian E.A., Nasef M., Yahaya A. Chitosan physical forms: a short review. Australian Journal of Basic and Applied Sciences. 2011. 5. P. 670–677. .

22. Sacco P., Furlani F., De Marzo G. et al. Concepts for developing physical gels of chitosan and of chitosan derivatives. Gels. 2018. 4, No 3. P. 67. https://doi.org/10.3390/gels4030067 .

23. Essel T.Y., Koomson A., Seniagya M.P.O. et al. Chitosan composites synthesized using acetic acid and tetraethylorthosilicate respond differently to methylene blue adsorption. Polymers. 2018. 10, No 5. P. 466. https://doi.org/10.3390/polym10050466 .

24. Pocov??-Mart??nez S., Cassano D., Voliani V. Naked nanoparticles in silica nanocapsules: a versatile family of nanorattle catalysts. ACS Appl. Nano Mater. 2018. 1, No 4. P. 1836–1840. https://doi.org/10.1021/acsanm.8b00247 .

25. Bankier C., Matharu R.K., Cheong Y.K. et al. Synergistic antibacterial effects of metallic nano-particle combinations. Sci. Rep. 2019. 9, No 1. P. 1–8. https://doi.org/10.1038/s41598-019-52473-2 .

26. Arguelles-Monal W.M., Lizardi-Mendoza J., Fernandez-Quiroz D. et al. Chitosan derivatives: Introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers. 2018. 10, No 3. P. 342. https://doi.org/10.3390/polym10030342 .

27. Shariatinia Z. Pharmaceutical applications of chitosan. Adv.Colloid Interface Sci. 2019. 263. P. 131–194. https://doi.org/10.1016/j.cis.2018.11.008 .

28. Abedian Z., Jenabian N., Moghadamnia A.A. et al. Antibacterial activity of high-molecular-weight and low-molecular-weight chitosan upon oral pathogens. J. Conserv. Dent. 2019. 22, No 2. P. 169–174. https://doi.org/10.4103/JCD.JCD_300_18 .

29. Pogodin A.I., Malakhovska T.O., Filep M.J. et al. Optical pseudogap of Ag7(Si1-xGex)S5I solid solu-tions. Ukr. J. Phys. Opt. 2022. 23, No 2. P. 77–85. https://doi.org/10.3116/16091833/23/2/77/2022 .

30. Pogodin A.I., Filep M.J., Malakhovska T.O. et al. Microstructural, mechanical and electrical proper-ties of superionic Ag6+x(P1-xGex)S5I ceramic mate-rials. J. Phys. Chem. Solids. 2022. 171. P. 111042. https://doi.org/10.1016/j.jpcs.2022.111042 .

31. Ayd?n C., Abd El-sadek M.S., Zheng K., Yahia I.S., Yakuphanoglu F. Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique. Opt. Laser Technol. 2013. 48. P. 447–452. https://doi.org/10.1016/j.optlastec.2012.11.004 .

32. Hong E.J., Kim Y.S., Choi D.G., Shim M.S. Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles. J. Indust. Eng. Chem. 2018. 67. P. 429–436. https://doi.org/10.1016/j.jiec.2018.07.017 .

33. Amirjani A., Koochak N.N., Haghshenas D.F. Synthesis of silver nanotriangles with tunable edge length: A promising candidate for light harvesting purposes within visible and near–infrared ranges. Mater. Res. Exp. 2018. 6, No 3. P. 036204. https://doi.org/10.1088/2053-1591/aaf624 .

34. Yang L, Kruse B. Revised Kubelka–Munk theory. I. Theory and application. J. Opt. Soc. Am. A. 2004. 21. P. 1933–1941. https://doi.org/10.1364/JOSAA.21.001933 .

35. Yakuphanoglu F., Mehrotra R., Gupta A., Munoz M. Nanofiber organic semiconductors: The effects of nanosize on the electrical charge transport and optical properties of bulk polyanilines. J. Appl. Polym. Sci. 2009. 114. P. 794–799. https://doi.org/10.1002/app.28535 .