Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 089-096 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.089
References
1. Medical Imaging Technology. 2014. https://doi.org/10.1016/c2012-0-06086-3 .
2. Belmans N., Oenning A.C., Salmon B. et al. Radiobiological risks following dentomaxillofacial imaging: should we be concerned? Dento-maxillofacial Radiology. 2021. 50, No 6. P. 20210153. https://doi.org/10.1259/dmfr.20210153 .
3. Batyaev V.F., Belichenko S.G., & Bestaev R.R. Features of different inorganic scintillators used in neutron-radiation systems for illegal substance detection. IEEE Trans. Nucl. Sci. 2016. 63, No 2. P. 524–527. https://doi.org/10.1109/tns.2016.2521409 .
4. Yanagida T. Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. B: Phys. Biol. Sci. 2018. 94, No 2. P. 75–97. https://doi.org/10.2183/pjab.94.007 .
5. Glodo J., Wang Y., Shawgo R. et al. New develop-ments in scintillators for security applications. Phys. Procedia. 2017. 90. P. 285–290. https://doi.org/10.1016/j.phpro.2017.09.012 .
6. Xiao Z., Yu S., Li Y. et al. Materials development and potential applications of transparent ceramics: A review. Mater. Sci. Eng. R Rep. 2020. 139. P. 100518. https://doi.org/10.1016/j.mser.2019.100518 .
7. Sadygov Z., Ahmadov F., Khorev S. et al. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density. Nucl. Instrum. Methods Phys. Res. A. 2016. 824. P. 137–138. https://doi.org/10.1016/j.nima.2015.11.008 .
8. Sadygov Z., Ariffin A., Akhmedov F. et al. Technology of manufacturing micropixel avalanche photodiodes and a compact matrix on their basis. Phys. Part. Nucl. Lett. 2013. 10, No 7. P. 780–782. https://doi.org/10.1134/s154747711401018x .
9. Sadygov Z., Abdullaev Kh., Anfimov N. et al. A microchannel avalanche photodiode with a fast recovery time of parameters. Tech. Phys. Lett. 2013. 39, No 6. P. 498–500. https://doi.org/10.1134/s1063785013060114 .
10. Ahmadov F., Abdullayev F., Ahmadov G. et al. New phoswich detector based on LFS and p-terphenyl scintillators coupled to micro pixel avalanche photodiode. Functional Materials. 2017. 24, No 2. P. 341–344. https://doi.org/10.15407/fm24.02.341 .
11. Ahmadov F., Abdinov O., Ahmadov G. et al. Alpha particle detector based on micropixel avalanche photodiodes. Phys. Part. Nucl. Lett. 2013. 10, No 7. P. 778–779. https://doi.org/10.1134/s1547477114010038 .
12. Sadigov A.Z., Ahmadov F.I., Sadygov Z.Y. et al. Improvement of parameters of micro-pixel avalanche photodiodes. J. Instrum. 2022. 17, No 7. P. P07021. https://doi.org/10.1088/1748-0221/17/07/p07021 .
13. Sadigov A., Ahmadov F., Ahmadov G. et al. A new detector concept for silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. A. 2016. 824. P. 135–136. https://doi.org/10.1016/j.nima.2015.11.013 .
14. Sadigov A., Suleymanov S., Ahmadov F. et al. A micropixel avalanche phototransistor for time of flight measurements. Nucl. Instrum. Methods Phys. Res. A. 2017. 845. P. 621–622. https://doi.org/10.1016/j.nima.2016.06.081 .
15. Kandarakis I., Cavouras D., Sianoudis I. et al. On the response of Y3Al5O12:Ce (YAG:Ce) powder scintillating screens to medical imaging X-rays. Nucl. Instrum. Methods Phys. Res. A. 2005. 538, No 1–3. P. 615–630. https://doi.org/10.1016/j.nima.2004.08.101 .
16. Zhang R., Lin H., Yu Y. et al. A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass. Laser Photonics Rev. 2013. 8, No 1. P. 158–164. https://doi.org/10.1002/lpor.201300140 .
17. Wang S., Song Z., Liu Q. Recent progress in Ce3+/Eu2+-activated LEDs and persistent phosphors: focusing on the local structure and the electronic structure. J. Mater. Chem. C. 2023. 11, No 1. P. 48–96. https://doi.org/10.1039/d2tc02639b .
18. Pekur D.V., Sorokin V.M., Nikolaenko Y.E. Features of wall-mounted luminaires with different types of light sources. Electrica. 2021. 21, No 1. P. 32–40. https://doi.org/10.5152/electrica.2020.20017 .
19. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. et al. Electro-optical characteristics of an innovative LED luminaire with an LED matrix cooling system based on heat pipes. SPQEO. 2020. 23, No 4. P. 415–423. https://doi.org/10.15407/spqeo23.04.415 .
20. Pekur D.V., Kolomzarov Yu.V., Sorokin V.M., Nikolaenko Yu.E. Super powerful LED luminaires with a high color rendering index for lighting systems with combined electric power supply. SPQEO. 2022. 25, No 1. P. 097–107. https://doi.org/10.15407/spqeo25.01.097 .
21. Kornaga V.I., Pekur D.V., Kolomzarov Yu.V. et al. Intelligence system for monitoring and governing the energy efficiency of solar panels to power LED luminaires. SPQEO. 2021. 24. No 5. P. 200–209. https://doi.org/10.15407/spqeo24.02.200 .
22. Korsunska N., Markevich I., Ponomaryov S. et al. Effect of milling of ZnO and MgO powders on structural, optical, and electrical properties of (Mg,Zn)O ceramics. phys. status solidi (a). 2022. 219, No 21. P. 2200050. https://doi.org/10.1002/pssa.202200050 .
23. Khmil’ D.N., Kamuz A.M., Oleksenko P.F. et al. Rapid method of determining the suitability of photophosphor suspensions for fabricating white LEDs. J. Opt. Technol. 2012. 79, No 6. P. 382. https://doi.org/10.1364/jot.79.000382 .
24. Sorokin V.M., Konoshchuk N.V., Khmil D.M. et al. CH3NH3PbBr3 nanocrystals formed in situ in polystyrene used for increasing the color rendering index of white Leds. Theor. Exp. Chem. 2019. 55, No 4. P. 223–231. https://doi.org/10.1007/s11237-019-09612-7 .
25. Krames M.R., Shchekin O.B., Mueller-Mach R. et al. Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology. 2007. 3, No 2. P. 160–175. https://doi.org/10.1109/jdt.2007.895339 .
26. Khmil’ D.N., Kamuz A.M., Oleksenko P.F., Aleksenko N.G., Kamuz O.A. Rapid method of determining the suitability of photophosphor suspensions for fabricating white LEDs. J. Opt. Technol. 2012. 79, No 6. P. 382. https://doi.org/10.1364/JOT.79.000382 .
27. Huang S., Shang M., Yan Y. et al. Ultra-broadband green-emitting phosphors without cyan gap based on double-heterovalent substitution strategy for full-spectrum WLED lighting. Laser Photonics Rev. 2022. 16, No 12. P. 2200473. https://doi.org/10.1002/lpor.202200473 .
28. Yan Y., Zhang, C., Zheng, L. et al. Dosimeter based on YAG: Ce phosphor via sol-gel method for online X-ray radiation monitoring. Crystals. 2021. 11, No 12. P. 1567. https://doi.org/10.3390/cryst11121567 .
29. Veronese I., Chiodini N., Cialdi S. et al. Real-time dosimetry with Yb-doped silica optical fibres. Phys. Med. Biol. 2017. 62, No 10. P. 4218–4236. https://doi.org/10.1088/1361-6560/aa642f .
30. Tucureanu V., Matei A., Avram A.M. Synthesis and characterization of YAG:Ce phosphors for white LEDs. Opto-electronics Rev. 2015. 23, No 4. P. 239–251. https://doi.org/10.1515/oere-2015-0038 .
31. Nuruyev S., Ahmadov G., Sadigov A. et al. Performance of silicon photomultipliers at low temperature. J. Instrum. 2020. 15, No 3. P. C03003. https://doi.org/10.1088/1748-0221/15/03/c03003 .
32. Nuriyev S., Ahmadov F., Sadygov Z. et al. Performance of a new generation of micropixel avalanche photodiodes with high pixel density and high photon detection efficiency. Nucl. Instrum. Methods Phys. Res. A. 2018. 912. P. 320–322. https://doi.org/10.1016/j.nima.2017.12.006 .
33. Holik M., Ahmadov F., Sadigov A. et al. Gamma ray detection performance of newly developed MAPD-3NM-II photosensor with LaBr3(Ce) crystal. Sci. Rep. 2022. 12, No 1. P. 15855. https://doi.org/10.1038/s41598-022-20006-z .
34. Holik M., Ahmadov F., Sadygov A. et al. Investigation of the possibility of a new detector based on SiPM in nuclear forensics. J. Instrum. 2023. 18, No 1. P. C01015. https://doi.org/10.1088/1748-0221/18/01/c01015 .
35. Ahmadov F., Ahmadov G., Abdullaev X. et al. Development of compact radiation detectors based on MAPD photodiodes with lutetium fine silicate and stilbene scintillators. J. Instrum. 2015. 10, No 2. P. C02041. https://doi.org/10.1088/1748-0221/10/02/c02041 .
36. Ahmadov F., Ahmadov G., Guliyev E. et al. New gamma detector modules based on micropixel avalanche photodiode. J. Instrum. 2017. 12, No 1. P. C01003. https://doi.org/10.1088/1748-0221/12/01/c01003 .
37. Akbarov R.A., Ahmadov G.S., Ahmadov F.I. et al. Fast neutron detectors with silicon photomultiplier readouts. Nucl. Instrum. Methods Phys. Res. A. 2019. 936. P. 549–551. https://doi.org/10.1016/j.nima.2018.11.089 .
38. Akbarov R.A., Nuruyev S.M., Ahmadov G.S. et al. Scintillation readout with MAPD array for gamma spectrometer. J. Instrum. 2020. 15, No 1. P. C01001. https://doi.org/10.1088/1748-0221/15/01/c01001 .
39. Ahmadov G., Ahmadov F., Holik M. et al. Gamma-ray spectroscopy with MAPD array in the readout of LaBr3:Ce scintillator. J. Instrum. 2021. 16, No 7. P. P07020. https://doi.org/10.1088/1748-0221/16/07/p07020 .
40. Ahmadov F., Ahmadov G., Akbarov R. et al. Inves-tigation of parameters of new MAPD-3NM silicon photomultipliers. J. Instrum. 2022. 17. P. C01001. https://doi.org/10.1088/1748-0221/17/01/c01001 .
| |
|
|