Semiconductor Physics, Quantum Electronics & Optoelectronics, 26 (1), P. 114-119 (2023).
DOI: https://doi.org/10.15407/spqeo26.01.114


References

1. Zhang J., Lu L., Zhang J. et al. Monolithic perovskite/silicon tandem solar cells with optimized front zinc doped indium oxides and industrial textured silicon heterojunction solar cells. J. Alloys Compd. 2023. 932. P. 167640. https://doi.org/10.1016/j.jallcom.2022.167640 .

2. Zeder S., Ruhstaller B., Aeberhard U. Assessment of photon recycling in perovskite solar cells by fully coupled optoelectronic simulation. Phys. Rev. Appl. 2022. 17, No 1. P. 014023. https://doi.org/10.1103/PhysRevApplied.17.014023 .

3. Sharma R., Sharma A., Agarwal S., Dhaka M. Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Solar Energy. 2022. 244. P. 516–535. https://doi.org/10.1016/j.solener.2022.08.001 .

4. Saikia D., Bera J., Betal A., Sahu S. Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation. Opt. Mater. 2022. 123. P. 111839. https://doi.org/10.1016/j.optmat.2021.111839 .

5. Najafi M., Di Giacomo F., Zhang D. et al. Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small. 2018. 14, No 12. P. 1702775. https://doi.org/10.1002/smll.201702775 .

6. Kim J.Y., Lee J.-W., Jung H.S., Shin H., Park N.-G. High-efficiency perovskite solar cells. Chem. Rev. 2020. 120, No 15. P. 7867–7918. https://doi.org/10.1021/acs.chemrev.0c00107 .

7. Yi C., Wu Y., Gao Y., Du Q. Tandem solar cells efficiency prediction and optimization via deep learning. Phys. Chem. Chem. Phys. 2021. 23, No 4. P. 2991–2998. https://doi.org/10.1039/D0CP05882C .

8. Riedel M., Hofs S., Ruff A. et al. A tandem solar biofuel cell: harnessing energy from light and biofuels. Angew. Chem. 2021. 133, No 4. P. 2106–2111. https://doi.org/10.1002/ange.202012089 .

9. Nguyen D.C., Sato K., Hamada M. et al. Annual output energy harvested by building-integrated photovoltaics based on the optimized structure of 2-terminal perovskite/silicon tandem cells under realistic condition. Solar Energy. 2022. 241. P. 452–459. https://doi.org/10.1016/j.solener.2022.06.018 .

10. Messmer C., Tutsch L., Pingel S. et al. Optimized front TCO and metal grid electrode for module-integrated perovskite-silicon tandem solar cells. Prog. Photovolt.: Res. Appl. 2022. 30, No 4. P. 374–383. https://doi.org/10.1002/pip.3491 .

11. Kim C.U., Yu J.C., Jung E.D. et al. Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells. Nano Energy. 2019. 60. P. 213–221. https://doi.org/10.1016/j.nanoen.2019.03.056 .

12. Chen B., Wang P., Li R. et al. Composite electron transport layer for efficient n-i-p type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage. J. Energy Chem. 2021. 63. P. 461–467. https://doi.org/10.1016/j.jechem.2021.07.018 .

13. Palmstrom A.F., Eperon G.E., Leijtens T. et al. Enabling flexible all-perovskite tandem solar cells. Joule. 2019. 3, No 9. P. 2193–2204. https://doi.org/10.1016/j.joule.2019.05.009 .

14. Duong T., Wu Y., Shen H. et al. Rubidium multi-cation perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 2017. 7, No 14. P. 1700228. https://doi.org/10.1002/aenm.201700228 .

15. Li F., Peng X., Wang Z. et al. Machine learning (ML)-assisted design and fabrication for solar cells. Energy & Environmental Materials. 2019. 2, No 4. P. 280–291. https://doi.org/10.1002/eem2.12049 .

16. Mahran A.M., Abdellatif S.O. Investigating the per-formance of mesostructured based solar cells under indoor artificial lighting. 2021 Int. Telecommun. Conf. (ITC-Egypt), Alexandria, Egypt, 2021. P. 1–5. https://doi.org/10.1109/ITC-Egypt52936.2021.9513924 .

17. Mahran A.M., Abdellatif S.O. Optoelectronic modelling and analysis of transparency against efficiency in perovskites/dye-based solar cells. 2021 Int. Conf. on Microelectronics (ICM), New Cairo City, Egypt, 2021. P. 178–181. https://doi.org/10.1109/ICM52667.2021.9664924 .

18. Ismail Z.S., Sawires E., Amer F.Z., Abdellatif S.O. Investigating the capacitive properties of all-inorganic lead halides perovskite solar cells using energy band diagrams. 2022 IEEE Int. Conf. on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 2022. P. 45–48. https://doi.org/10.1109/ICSE56004.2022.9863109 .

19. Eid A.A., Ismail Z.S., Abdellatif S.O. Optimizing SCAPS model for perovskite solar cell equivalent circuit with utilizing Matlab-based parasitic resistance estimator algorithm. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 2020. P. 503–507. https://doi.org/10.1109/NILES50944.2020.9257929 .

20. Abdelaziz S., Zekry A., Shaker A., Abouelatta M. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 2020. 101. P. 109738. https://doi.org/10.1016/j.optmat.2020.109738 .

21. Al-Sabana O., Abdellatif S.O. Optoelectronic devices informatics: Optimizing DSSC performance using random-forest machine learning algorithm. Optoelectron. Lett. 2022. 18, No 3. P. 148–151. https://doi.org/10.1007/s11801-022-1115-9 .

22. Al-Saban O., Abdellatif S.O. Optoelectronic materials informatics: Utilizing random-forest machine learning in optimizing the harvesting capabilities of mesostructured-based solar cells. 2021 Int. Telecommun. Conf. (ITC-Egypt), Alexandria, Egypt, 2021. P. 1–4. https://doi.org/ 10.1109/ITC-Egypt52936.2021.9513898 .

23. Abdellatif S.O., Amr L., Kirah K., Ghali H.A. Experimental studies for glass light transmission degradation in solar cells due to dust accumulation using effective optical scattering parameters and machine learning algorithm. IEEE J. Photovolt. 2023. 13, No 1. P. 158–164. https://doi.org/10.1109/JPHOTOV.2022.3226711 .

24. Abdellatif S., Fathi A., Abdullah K. et al. Investiga-ting the variation in the optical properties of TiO2 thin-film utilized in bifacial solar cells using machine learning algorithm. J. Photonics Energy. 2022. 12, No 2. P. 022202. https://doi.org/10.1117/1.JPE.12.022202 .

25. Chakure A. Implementing Random Forest Regres-sion in Python: An Introduction. Ed.: builtin, 2022.

26. R.B.C.P. Ltd, Understanding Bias-Variance Tradeoff. Ed.: RSGB Business Consultant Pvt. Ltd.

27. Schmiga C., Nagel H., Schmidt J. 19% efficient n-type Czochralski silicon solar cells with screen-printed aluminium-alloyed rear emitter. Prog. Photovolt.: Res. Appl. 2006. 14, No 6. P. 533–539. https://doi.org/10.1002/pip.725 .