Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 010-018 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.010
References
1. Reznikov Y., Buchnev O., Tereshchenko O. et al.
Ferroelectric nematic suspension. Appl. Phys. Lett.
2003. 82, No 12. P. 1917-1919.
https://doi.org/10.1063/1.1560871
2. Atkuri H., Cook G., Evans D.R. et al. Preparation of
ferroelectric nanoparticles for their use in liquid
crystalline colloids. J. Opt. A: Pure Appl. Opt.
2009. 11, No 2. P. 024006.
https://doi.org/10.1088/1464-4258/11/2/024006
3. Kurochkin O., Atkuri H., Buchnev O. et al. Nano-
colloids of Sn 2 P 2 S 6 in nematic liquid crystal pentyl-
cianobiphenile. Condens. Matter Phys. 2010. 13,
No 3. P. 33701(1-9).
https://doi.org/10.5488/CMP.13.33701
4. Caruntu D., Rostamzadeh T., Costanzo T. et al.
Solvothermal synthesis and controlled self-assem-
bly of monodisperse titanium-based perovskite
colloidal nanocrystals. Nanoscale. 2015. 7, No 30.
P. 12955. https://doi.org/10.1039/C5NR00737B
5. Nayak S., Chaki T.K., Khastgir D. Spherical ferro-
electric PbZr 0.52 Ti 0.48 O 3 nanoparticles with high
permittivity: Switchable dielectric phase transition
with temperature. Ceram. Int. 2016. 42. P. 14490.
https://doi.org/10.1016/j.ceramint.2016.06.056
6. Cook G., Glushchenko A.V., Reshetnyak V. et al.
Nanoparticle doped organic-inorganic hybrid
photorefractives. Opt. Expess. 2008. 16, No 6.
P. 4015. https://doi.org/10.1364/OE.16.004015
SPQEO, 2025. V. 28, No 1. P. 010-018.
Gudenko Ju.M., Pylypchuk O.S., Vainberg V.V. et al. Ferroelectric nanoparticles in liquid crystals …
016
7. Evans D.R., Basun S.A., Cook G. et al. Electric
field interactions and aggregation dynamics of ferro-
electric nanoparticles in isotropic fluid suspensions.
Phys. Rev. B. 2011. 84, No 17. P. 174111.
https://doi.org/10.1103/PhysRevB.84.174111
8. Lorenz A., Zimmermann N., Kumar S. et al. Doping
the nematic liquid crystal 5CB with milled BaTiO 3
nanoparticles. Phys. Rev. E. 2012. 86. P. 051704.
https://doi.org/10.1103/PhysRevE.86.051704
9. Beh E.S., Basun S.A., Feng X. et al. Molecular
catalysis at polarized interfaces created by
ferroelectric BaTiO 3 . Chem. Sci. 2017. 8, No 4.
P. 2790. https://doi.org/10.1039/C6SC05032H
10. Cook G., Barnes J.L., Basun S.A. et al. Harvesting
single ferroelectric domain stressed nanoparticles
for optical and ferroic applications. J. Appl. Phys.
2010. 108, No 6. P. 064309.
https://doi.org/10.1063/1.3477163
11. Basun S.A., Cook G., Reshetnyak V.Y. et al. Dipole
moment and spontaneous polarization of
ferroelectric nanoparticles in a nonpolar fluid
suspension. Phys. Rev. B. 2011. 84. P. 024105.
https://doi.org/10.1103/PhysRevB.84.024105
12. Starzonek S., Rzoska S.J., Drozd-Rzoska A. et al.
Impact of ferroelectric and superparaelectric nano-
particles on phase transitions and dynamics in nema-
tic liquid crystals. Phys. Rev. E. 2017. 96. P. 022705.
https://doi.org/10.1103/PhysRevE.96.022705
13. Mertelj A., Cmok L., ?opi? M. et al. Critical
behavior of director fluctuations in suspensions of
ferroelectric nanoparticles in liquid crystal at
nematic to SmA phase transition. Phys. Rev. E.
2010. 85. P. 021705.
https://doi.org/10.1103/PhysRevE.85.021705
14. Lorenz A., Zimmermann N., Kumar S. et al.
Doping a mixture of two smectogenic liquid
crystals with barium titanate nanoparticles. J. Phys.
Chem. B. 2013. 117, No 3. P. 937.
https://doi.org/10.1021/jp310624c
15. Shukla R.K., Liebig C.M., Evans D.R., Haase W.
Electro-optical behavior and dielectric dynamics of
harvested ferroelectric LiNbO 3 nanoparticles doped
ferroelectric liquid crystal nanocolloids. Royal
Society of Chemistry, RSC Adv. 2014. 36. P. 18529.
https://doi.org/10.1039/C4RA00183D
16. Idehenre I.U., Barnakov Yu.A., Basun S.A., Evans
D.R. Spectroscopic studies of the effects of mecha-
nochemical synthesis on BaTiO 3 nanocolloids
prepared using high-energy ball-milling. J. Appl.
Phys. 2018. 124. P. 165501.
https://doi.org/10.1063/1.5046682
17. Barnakov Y.A., Idehenre I.U., Basun S.A. et al.
Uncovering the mystery of ferroelectricity in zero
dimensional nanoparticles. Nanoscale Adv. 2019. 2.
P. 664. https://doi.org/10.1039/C8NA00131F
18. Eliseev E.A., Morozovska A.N., Vysochanskii
Y.M. et al. Light-induced transitions of polar state
and domain morphology in photo-ferroelectric
nanoparticles. Phys. Rev. B. 2024. 109. P. 045434.
https://doi.org/10.1103/PhysRevB.109.045434
19. Zhang H., Liu S., Ghose S. et al. Structural origin of
recovered ferroelectricity in BaTiO 3 nanoparticles.
Phys. Rev. B. 2023. 108. P. 064106.
https://doi.org/10.1103/PhysRevB.108.064106
20. Eliseev E.A., Morozovska A.N., Kalinin S.V.,
Evans D.R. Strain-induced polarization enhance-
ment in BaTiO 3 core-shell nanoparticles. Phys. Rev.
B. 2024. 109. P. 014104.
https://doi.org/10.1103/PhysRevB.109.014104
21. Morozovska A., Pylypchuk O., Ivanchenko S. et al.
Electrocaloric response of the dense ferroelectric
nanocomposites. Ceramics Int. 2024. 50. P. 11743.
https://doi.org/10.1016/j.ceramint.2024.01.079
22. Silibin M.V., Solnyshkin A.V., Kiselev D.A. et al.
Local ferroelectric properties in PVDF/BPZT nano-
composites: Interface effect. J. Appl. Phys. 2013.
114. P. 144102. https://doi.org/10.1063/1.4824463
23. Silibin M., Belovickis J., Svirskas S. et al. Polariza-
tion reversal in organic-inorganic ferroelectric
composites: modeling and experiment. Appl. Phys.
Lett. 2015. 107. P. 142907.
https://doi.org/10.1063/1.4932661
24. Yang F.Z., Cheng H.F., Gao H.J. et al. Technique
for characterizing azimuthal anchoring of twisted
nematic liquid crystals using half-leaky guided
modes. J. Opt. Soc. Am. B. 2001. 18, No 7. P. 994-1002. https://doi.org/10.1364/JOSAB.18.000994
25. HD MicroSystems Product bulletin PI2525, PI2555
and PI2574; 2012 Nov.
26. Choy T.C. Effective Medium Theory. Oxford:
Clarendon Press, 1999.
27. Landau L.D., Pitaevskii L.P., Lifshitz E.M. Electro-
dynamics of Continuous Media. 8. Elsevier, 2013.
28. Garnett J.C.M. Colours in metal glasses and in
metallic films. Phil. Trans. R. Soc. London. Ser. A.
1904. 203. P. 385.
https://doi.org/10.1098/rsta.1904.0024
29. Bruggeman D.A.G. Berechnung verschiedener physi-
kalischer Konstanten von heterogenen Substanzen.
I. Dielektrizit?tskonstanten und Leitf?higkeiten der
Mischk?rper aus isotropen Substanzen. Ann. Phys.
1935. 416. P. 636.
https://doi.org/10.1002/andp.19354160705
30. Simpkin R. Derivation of Lichtenecker’s logarithm-
mic mixture formula from Maxwell’s equations.
IEEE Trans. Microw. Theory Techn. 2010. 58. P.
545. https://doi.org/10.1109/TMTT.2010.2040406
31. Carr G.L., Perkowitz S., Tanner D.B. Far-infrared
properties of inhomogeneous materials. In: Infrared
and Millimeter Waves. Vol. 13, ed. K.J. Button.
Academic Press, Orlando, 1985. P. 171-263.
32. Petzelt J., Nuzhnyy D., Bovtun V., Crandles D.A.
Origin of the colossal permittivity of (Nb+In) co-
doped rutile ceramics by wide-range dielectric
spectroscopy. Phase Trans. 2018. 91. P. 932.
https://doi.org/10.1080/01411594.2018.1501801
33. Rychetsk? I., Nuzhnyy D., Petzelt J. Giant permitti-
vity effects from the core-shell structure modeling
of the dielectric spectra. Ferroelectrics. 2020. 9. P.
569. https://doi.org/10.1080/00150193.2020.1791659
SPQEO, 2025. V. 28, No 1. P. 010-018.
Gudenko Ju.M., Pylypchuk O.S., Vainberg V.V. et al. Ferroelectric nanoparticles in liquid crystals …
017
34. Pylypchuk O.S., Ivanchenko S.E., Yelisieiev M.Y.
et al. Behavior of the dielectric and pyroelectric res-
ponses of ferroelectric fine-grained ceramics. J. Am.
Ceram. Soc. 2025. https://doi.org/10.1111/e20391
35. Hudak O., Rychetsky I., Petzelt J. Dielectric
response of microcomposite ferroelectrics. Ferro-
electrics. 1998. 208-209. P. 429-447.
https://doi.org/10.1080/00150199808014891
36. Shelestiuk S.M., Reshetnyak V.Yu., Sluckin T.J.
Frederiks transition in ferroelectric liquid-crystal
nanosuspensions. Phys. Rev. E. 2011. 83. P. 041705.
https://doi.org/10.1103/PhysRevE.83.041705
37. Al-Zangana S., Iliut M., Turner M. et al. Properties
of a thermotropic nematic liquid crystal doped with
graphene oxide. Adv. Opt. Mater. 2016. 4. P. 1541.
https://doi.org/10.1002/adom.201600351
38. Bogi A., Faetti S. Elastic, dielectric and optical
constants of 4'-pentyl-4-cyanobiphenyl. Liquid
Crystals. 2001. 28, No 5. P. 729-739.
https://doi.org/10.1080/02678290010021589
| |
|
|