Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 070-076 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.070
References
1. Brongersma M.L., Cui Yi, Fan Sh. Light
management for photovoltaics using high-index
nanostructures. Nat. Mater. 2014. 13. P. 451-460.
https://doi.org/10.1038/nmat3921
2. Zhang G., Finefrock S., Liang D. et al. Semi-
conductor nanostructure-based photovoltaic solar
cells. Nanoscale. 2011. 3. P. 2430-2443.
https://doi.org/10.1039/c1nr10152h
3. Ni X., Xu Q., Bai S., Qin Y. One-dimensional
coaxial nanowire solar cell. Int. J. Nanoparticles.
2011. 4, No 2/3. P. 184-199.
https://doi.org/10.1504/IJNP.2011.040508
4. Sun K., Kargar A., Park N. et al. Compound semi-
conductor nanowire solar cells. IEEE J. Sel. Top.
Quantum Electron. 2011. 17, No 4. P. 1033-1049.
https://doi.org/10.1109/JSTQE.2010.2090342
5. Otnes G., Borgstr?m M.T. Towards high efficiency
nanowire solar cells. Nano Today. 2017. 12. P. 31-45. https://doi.org/10.1016/j.nantod.2016.10.007
6. Garnett E.C., Brongersma M.L., Cui Yi, McGehee
M.D. Nanowire solar cells. Annu. Rev. Mater. Res.
2011. 41. P. 269-295. https://doi.org/annurev-
matsci-062910-100434.
7. Misra S., Yu L., Chen W. et al. A review on
plasma-assisted VLS synthesis of silicon nanowires
and radial junction solar cells. J. Phys. D: Appl.
Phys. 2014. 47. P. 393001 (21p.).
https://doi.org/10.1088/0022-3727/47/39/393001
8. Li H.H., Yang P.Yu., Chiou S.M. et al. A novel
coaxial-structured amorphous-silicon p-i-n solar cell
with Al-doped ZnO nanowires. IEEE Electron.
Device Lett. 2011. 32, No 7. P. 928-930.
https://doi.org/10.1109/LED.2011.2146752
9. Garnett E., Yang P. Light trapping in silicon
nanowire solar cells. Nano Lett. 2010. 10. P. 1082-1087. https://doi.org/10.1021/nl100161z
10. Pylypova O.V., Evtukh A.A., Parfenyuk P.V. et al.
Electrical and optical properties of nanowires based
solar cell with radial p-n junction. Opto-Electron.
Rev. 2019. 27. P. 143-148.
https://doi.org/10.1016/j.opelre.2019.05.003
11. Christesen J.D., Zhang X., Pinion C.W. et al.
Design principles for photovoltaic devices based on
Si nanowires with axial or radial p-n junctions.
Nano Lett. 2012. 12. P. 6024-6029.
https://doi.org/10.1021/nl303610m
12. Ali N.M., Allam N.K., Haleem A.M.A., Rafat N.H.
Analytical modeling of the radial p-n junction
nanowire solar cells. J. Appl. Phys. 2014. 116.
P. 024308. https://doi.org/10.1063/1.4886596
13. Abdellatif S., Kirah K. Numerical modeling and
simulation for a radial p-i-n nanowire photovoltaic
device. Energy Procedia. 2013. 36. P. 488-491.
https://doi.org/10.1016/j.egypro.2013.07.055
14. Yu L., Misra S., Wang J. et al. Understanding light
harvesting in radial junction amorphous silicon thin
film solar cells. Sci. Rep. 2014. 4. P. 4357.
https://doi.org/10.1038/srep04357
15. Buryk I.P., Odnodvorets L.V., Khyzhnya Ya.V.
Simulation of parameters of coaxial solar cells
based on Si and InP nanowires. J. Nano- Electron.
Phys. 2021. 13, No 1. P. 01012(5p.).
https://doi.org/10.21272/jnep.13(1).01012
16. Simulating Solar Cell Devices Using Silvaco TCAD.
Simulation Standard. 2008. 18, No 2. P. 1-3.
17. ATLAS User’s Manual. Santa Clara, CA: Silvaco,
2015. P. 1674.
18. Gnilenko A.B., Plaksin S.V. Computer simulation
of a thin-film solar cell with double-sided coating of
aluminum nanoparticles. Telecommun. Radio Eng.
2019. 78, No 15. P. 1323-1332.
https://doi.org/10.1615/TelecomRadEng.v78.i15.20
19. Gnilenko A.B., Plaksin S.V. Numerical analysis of
aluminum nanoparticle influence on the characteris-
tics of a thin-film solar cell. SPQEO. 2019. 22. P.
424-429. https://doi.org/10.15407/spqeo22.04.424
| |
|
|