Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 093-101 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.093


References


1. Pinheiro T., Morais M., Silvestre S. et al. Direct laser writing: from materials synthesis and conversion to electronic device processing. Adv. Mater. 2024. 36. P. 2402014. https://doi.org/10.1002/adma.202402014
2. Manshina A., Tumkin I., Khairullina E. et al. The second laser revolution in chemistry: emerging laser technologies for precise fabrication of multifunctional nanomaterials and nanostructures. Adv. Funct. Mater. 2024. 34. P. 2405457. https://doi.org/10.1002/adfm.202405457
3. Maskless laser lithography. Heidelberg Instruments (2024, June 6). https://heidelberg-instruments.com/ core-technologies/maskless-laser-lithography.
4. Dixit V.K. Development of a cost effective maskless photolithography system. RRCAT Newsletter. 2018. 31, No 2. P. 14-20.
5. Weicheng T. Research progress of laser lithography. J. Phys.: Conf. Series. 2023. 2608. P. 012016. https://doi.org/10.1088/1742-6596/2608/1/012016
6. Menon R., Patel A., Gil D. et al. Maskless lithography. Mater. Today. 2005. 8, No 2. P. 26-33. https://doi.org/10.1016/S1369-7021(05)00699-1
7. Srikanth S., Mohan J.M., Dudala S. et al. Direct UV laser writing system to photolithographically fabri- cate optimal microfluidic geometries: Experimental investigations. Mater. Today: Proc. 2020. 2. P. 799-803. https://doi.org/10.1016/j.matpr.2019.12.301
8. Gale M.T., Rossi M., Pedersen J. et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists. Opt. Eng. 1994. 33, No
11. P. 3556-3566. https://doi.org/10.1117/12.179892
9. he . And there was light: prospects for the crea- tion of micro- and nanostructures through maskless photolithography. ACS Nano. 2017. 11. P. 8537-8541. https://doi.org/10.1021/acsnano.7b05593
10. Kim D.I., Rhee H.G., Kim G.H. Performance evaluation of direct laser lithographic system for rotationally symmetric diffractive optical elements. Proc. SPIE. 2012. 8249. P. 82491C-1-82491C-7. https://doi.org/10.1117/12.906548
11. Haefner M., Pruss C., Osten W. Laser direct writing of rotationally symmetric high-resolution structures. Appl. Opt. 2011. 50. P. 59-83. https://doi.org/10.1364/AO.50.005983
12. Duoshu W., Luo C., Xiong Y. et al. Fabrication tech- nology of the centrosymmetric continuous relief dif- fractive optical elements. Phys. Procedia. 2011. 18. P. 95-99. https://doi.org/10.1016/j.phpro.2011.06.065
13. Wang D.S., Luo C.T., Chen T. et al. Laser power characterization method for fabrication of centrosymmetric CR-DOEs mask. Adv. Mater. Res.
2008. 53-54. P. 337-342. https://doi.org/ 10.4028/www.scientific.net/AMR.53-54.337.
14. Kosyak I.V., Tsubin O.A. Formation of radial optical structures on a circular laser recording system. Data Recording, Storage & Processing.
2024. 1, No 8. P. 3-8. https://doi.org/10.35681/ 1560-9189.2024.26.1.308326.
15. Wang M.R., Huang X.G. Subwavelength-resolvable focused non-Gaussian beam shaped with a binary diffractive optical element. Appl. Opt. 1999. 38. P. 2171-2176. https://doi.org/10.1364/AO.38.002171
16. Stsepuro N., Nosov P., Galkin M. et al. Generating Bessel-Gaussian beams with controlled axial intensity distribution. Appl. Sci. 2020. 10. P. 7911. https://doi.org/10.3390/app10217911
17. Bhuyan M.K., Courvoisier F., Phing H.S. et al. Laser micro- and nanostructuring using femto- second Bessel beams. Eur. Phys. J. Spec. Top.
2011. 199, No 1. P. 101-110. https://hal.science/ hal-00661745/file/Bhuyan2011.pdf.
18. Yang Y., Jia E., Ma X. High throughput direct writing of a mesoscale binary optical element by femtosecond long focal depth beams. Light: Adv. Manuf. 2023. 42, No 4. P. 466-475. https://doi.org/10.37188/lam.2023.042
19. Petrov V.V., Kryuchyn À.À., Beliak Ie.V. et al. Advantages of direct laser writing for enhancing the resolution of diffractive optical element fabrication processes. Phys. Chem. Solid State. 2024. 25. P. 587-594. https://doi.org/10.15330/pcss.25.3.587-594
20. Al-Hamry A., Kang H., Sowade E. et al. Tuning the reduction and conductivity of solution-processed graphene oxide by intense pulsed light. Carbon.
2016. 102. P. 236-244. https://doi.org/10.1016/j.carbon.2016.02.045
21. El-Ahmar S., Koczorowski W., Po?niak A. et al. Graphene-based magnetoresistance device utilizing strip pattern geometry. Appl. Phys. Lett. 2017. 110. P. 043503. http://doi.org/10.1063/1.4974938
22. Prakash V., Rodriguez R.D., Al-Hamry A. et al. Flexible plasmonic graphene oxide/heterostructures for dual-channel detection. Analyst. 2019. 144. P. 3297-3306. https://doi.org/10.1039/C8AN02495B
23. Hreshchuk O.M., Yukhymchuk V.O., Dzhagan V.M. et al. Efficient SERS substrates based on laterally ordered gold nanostructures made using interference lithography. SPQEO. 2019. 22. P. 215-223. https://doi.org/10.15407/spqeo22.02.215
24. Dan’ko V.A., Indutnyi I.Z., Myn’ko V.I. et al. Control of plasmons excitation by P- and S- polarized light in gold nanowire gratings by azimuthal angle variation. SPQEO. 2019. 22. P. 353-360. https://doi.org/10.15407/spqeo22.03.353
25. Indutnyi I.Z., Yukhymchuk V.O., Mynko V.I. et al. Shape effect of laterally ordered nanostructures on the efficiency of surface-enhanced Raman scattering. Ukr. J. Phys. 2024. 69, No 1. P. 11-196. https://doi.org/10.15407/ujpe69.1.11
26. Yeshchenko O.A., Golovynskyi S., Kudrya V. et al. Laser-induced periodic Ag surface structure with Au nanorods plasmonic nanocavity metasurface for strong enhancement of adenosine nucleotide label- free photoluminescence imaging. ACS Omega.
2020. 5, No 23. P. 14030-14039. https://dx.doi.org/10.1021/acsomega.0c01433
27. Li J., Wang L., Xu X. et al. Local laser annealing for amorphous/polycrystalline silicon hybrid photonics on CMOS. Opt. Laser Technol. 2025.
181. P. 111799. https://doi.org/10.1016/j.optlastec.2024.111799
28. Dmytruk I.M., Berezovska N.I., Hrabovskyi Ye.S. et al. The influence of ultrafast laser processing on morphology and optical properties of Au-GaAs composite structure. SPQEO. 2024. 27. P. 261-268. https://doi.org/10.15407/spqeo27.03.261
29. Bandhu H., Ashok P., Khandapu D.P. et al. Lithography-free fabrication of vanadium dioxide and its devices using direct laser writing. Opt. Laser Technol. 2023. 167. P. 109673. https://doi.org/10.1016/j.optlastec.2023.109673
30. Wang B., Peng R., Wang X. et al. Ultrafast, kinetically limited, ambient synthesis of vanadium dioxides through laser direct writing on ultrathin chalcogenide matrix. ACS Nano. 2021. 6, No 15. P. 10502-10513. https://doi.org/10.1021/acsnano.1c03050
31. Valakh M.Ya., Yukhymchuk V.O., Dzhagan V.M. et al. Variation of the metal-insulator phase transition temperature in VO 2 : An overview of some possible implementation methods. SPQEO.
2024. 27. P. 136-150. https://doi.org/10.15407/spqeo27.02.136
32. Tsiamis A., Li Y., Dunare C., Marland J.R.K. et al. Comparison of conventional and maskless lithographic techniques for More than Moore post- processing of foundry CMOS chips. J. Microelec- tromechanical Syst. 2020. 29, No 5. P. 1245-1252. https://doi.org/10.1109/JMEMS.2020.3015964
33. Deng Q., Yang Y., Gao H. et al. Fabrication of micro-optics elements with arbitrary surface profiles based on one-step maskless grayscale lithography. Micromachines. 2017. 8, No 10. P. 314. https://doi.org/10.3390/mi8100314
34. Petrov V.V., Kryuchyn A.A., Gorbov I.V. et al. Formation of submicron relief structures on the surface of sapphire substrates. Phys. Chem. Solid State. 2023. 24, No 2. P. 298-303. https://doi.org/10.15330/pcss.24.2.298-303
35. Khan M. S., Lachmayer R., Roth B. Maskless lithography for versatile and low cost fabrication of polymer based micro optical structures. OSA Continuum. 2020. 3, No 10. P. 2808-2816. https://doi.org/10.1364/OSAC.400056
36. Yarema O., Yarema M., Moser A. et al. Compo- sition- and size-controlled I-V-VI semiconductor nanocrystals. Chem. Mater. 2020. 32. P. 2078-2085. https://doi.org/10.1021/acs.chemmater.9b05191
37. Liu M., Yazdani N., Yarema M. et al. Colloidal quantum dot electronics. Sargent Nature Electronics. 2021. 4. P. 548-558. https://doi.org/10.1038/s41928-021-00632-7
38. Antolini F. Direct optical patterning of quantum dots: One strategy, different chemical processes. Nanomaterials. 2023. 13, No 13. P. 2008. https://doi.org/10.3390/nano13132008
39. Ozdemir R., Avermaet H. V., Erdem O. et al. Quantum dot patterning and encapsulation by maskless lithography for display technologies. ACS Appl. Mater. Interfaces. 2023. 15, No 7. P. 9629-9637. https://doi.org/10.1021/acsami.2c20982
40. Antolini F., Limosani F., Carcione R. Direct laser patterning of CdTe QDs and their optical properties control through laser parameters. Nanomaterials.
2022. 12, No 9. P. 1551. https://doi.org/10.3390/nano12091551
41. Pan J., Cho H., Coropceanu I. et al. Stimuli- responsive surface ligands for direct lithography of functional inorganic nanomaterials. Acc. Chem. Res.
2023. 56, No 17. P. 2286-2297. https://doi.org/10.1021/acs.accounts.3c00226
42. Wu H., Wang Y., Yu J. et al. Direct heat-induced patterning of inorganic nanomaterials. J. Am. Chem. Soc. 2022. 144, No 23. P. 10495-10506. https://doi.org/10.1021/jacs.2c03672
43. Jamaatisomarin F., Chen R., Hosseini-Zavareh S. et al. Laser scribing of photovoltaic solar thin films J. Manuf. Mater. Process. 2023. 7, No 3. P. 94. https://doi.org/10.3390/jmmp7030094
44. Harinarayana V., Shin Y.C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review. Opt. Laser Technol. 2021. 142. P. 107180. https://doi.org/10.1016/j.optlastec.2021.107180