Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (1), P. 093-101 (2025).
DOI: https://doi.org/10.15407/spqeo28.01.093
References
1. Pinheiro T., Morais M., Silvestre S. et al. Direct
laser writing: from materials synthesis and
conversion to electronic device processing. Adv.
Mater. 2024. 36. P. 2402014.
https://doi.org/10.1002/adma.202402014
2. Manshina A., Tumkin I., Khairullina E. et al. The
second laser revolution in chemistry: emerging laser
technologies for precise fabrication of
multifunctional nanomaterials and nanostructures.
Adv. Funct. Mater. 2024. 34. P. 2405457.
https://doi.org/10.1002/adfm.202405457
3. Maskless laser lithography. Heidelberg Instruments
(2024, June 6). https://heidelberg-instruments.com/
core-technologies/maskless-laser-lithography.
4. Dixit V.K. Development of a cost effective
maskless photolithography system. RRCAT
Newsletter. 2018. 31, No 2. P. 14-20.
5. Weicheng T. Research progress of laser lithography.
J. Phys.: Conf. Series. 2023. 2608. P. 012016.
https://doi.org/10.1088/1742-6596/2608/1/012016
6. Menon R., Patel A., Gil D. et al. Maskless
lithography. Mater. Today. 2005. 8, No 2. P. 26-33.
https://doi.org/10.1016/S1369-7021(05)00699-1
7. Srikanth S., Mohan J.M., Dudala S. et al. Direct UV
laser writing system to photolithographically fabri-
cate optimal microfluidic geometries: Experimental
investigations. Mater. Today: Proc. 2020. 2. P. 799-803. https://doi.org/10.1016/j.matpr.2019.12.301
8. Gale M.T., Rossi M., Pedersen J. et al. Fabrication
of continuous-relief micro-optical elements by direct
laser writing in photoresists. Opt. Eng. 1994. 33, No
11. P. 3556-3566. https://doi.org/10.1117/12.179892
9. he . And there was light: prospects for the crea-
tion of micro- and nanostructures through maskless
photolithography. ACS Nano. 2017. 11. P. 8537-8541. https://doi.org/10.1021/acsnano.7b05593
10. Kim D.I., Rhee H.G., Kim G.H. Performance
evaluation of direct laser lithographic system for
rotationally symmetric diffractive optical elements.
Proc. SPIE. 2012. 8249. P. 82491C-1-82491C-7.
https://doi.org/10.1117/12.906548
11. Haefner M., Pruss C., Osten W. Laser direct writing
of rotationally symmetric high-resolution structures.
Appl. Opt. 2011. 50. P. 59-83.
https://doi.org/10.1364/AO.50.005983
12. Duoshu W., Luo C., Xiong Y. et al. Fabrication tech-
nology of the centrosymmetric continuous relief dif-
fractive optical elements. Phys. Procedia. 2011. 18.
P. 95-99. https://doi.org/10.1016/j.phpro.2011.06.065
13. Wang D.S., Luo C.T., Chen T. et al. Laser power
characterization method for fabrication of
centrosymmetric CR-DOEs mask. Adv. Mater. Res.
2008. 53-54. P. 337-342. https://doi.org/
10.4028/www.scientific.net/AMR.53-54.337.
14. Kosyak I.V., Tsubin O.A. Formation of radial
optical structures on a circular laser recording
system. Data Recording, Storage & Processing.
2024. 1, No 8. P. 3-8. https://doi.org/10.35681/
1560-9189.2024.26.1.308326.
15. Wang M.R., Huang X.G. Subwavelength-resolvable
focused non-Gaussian beam shaped with a binary
diffractive optical element. Appl. Opt. 1999. 38. P.
2171-2176. https://doi.org/10.1364/AO.38.002171
16. Stsepuro N., Nosov P., Galkin M. et al. Generating
Bessel-Gaussian beams with controlled axial
intensity distribution. Appl. Sci. 2020. 10. P. 7911.
https://doi.org/10.3390/app10217911
17. Bhuyan M.K., Courvoisier F., Phing H.S. et al.
Laser micro- and nanostructuring using femto-
second Bessel beams. Eur. Phys. J. Spec. Top.
2011. 199, No 1. P. 101-110. https://hal.science/
hal-00661745/file/Bhuyan2011.pdf.
18. Yang Y., Jia E., Ma X. High throughput direct
writing of a mesoscale binary optical element by
femtosecond long focal depth beams. Light: Adv.
Manuf. 2023. 42, No 4. P. 466-475.
https://doi.org/10.37188/lam.2023.042
19. Petrov V.V., Kryuchyn À.À., Beliak Ie.V. et al.
Advantages of direct laser writing for enhancing the
resolution of diffractive optical element fabrication
processes. Phys. Chem. Solid State. 2024. 25. P.
587-594. https://doi.org/10.15330/pcss.25.3.587-594
20. Al-Hamry A., Kang H., Sowade E. et al. Tuning the
reduction and conductivity of solution-processed
graphene oxide by intense pulsed light. Carbon.
2016. 102. P. 236-244.
https://doi.org/10.1016/j.carbon.2016.02.045
21. El-Ahmar S., Koczorowski W., Po?niak A. et al.
Graphene-based magnetoresistance device utilizing
strip pattern geometry. Appl. Phys. Lett. 2017. 110.
P. 043503. http://doi.org/10.1063/1.4974938
22. Prakash V., Rodriguez R.D., Al-Hamry A. et al.
Flexible plasmonic graphene oxide/heterostructures
for dual-channel detection. Analyst. 2019. 144. P.
3297-3306. https://doi.org/10.1039/C8AN02495B
23. Hreshchuk O.M., Yukhymchuk V.O., Dzhagan
V.M. et al. Efficient SERS substrates based on
laterally ordered gold nanostructures made using
interference lithography. SPQEO. 2019. 22. P. 215-223. https://doi.org/10.15407/spqeo22.02.215
24. Dan’ko V.A., Indutnyi I.Z., Myn’ko V.I. et al.
Control of plasmons excitation by P- and S-
polarized light in gold nanowire gratings by
azimuthal angle variation. SPQEO. 2019. 22. P.
353-360. https://doi.org/10.15407/spqeo22.03.353
25. Indutnyi I.Z., Yukhymchuk V.O., Mynko V.I. et al.
Shape effect of laterally ordered nanostructures on
the efficiency of surface-enhanced Raman
scattering. Ukr. J. Phys. 2024. 69, No 1. P. 11-196.
https://doi.org/10.15407/ujpe69.1.11
26. Yeshchenko O.A., Golovynskyi S., Kudrya V. et al.
Laser-induced periodic Ag surface structure with
Au nanorods plasmonic nanocavity metasurface for
strong enhancement of adenosine nucleotide label-
free photoluminescence imaging. ACS Omega.
2020. 5, No 23. P. 14030-14039.
https://dx.doi.org/10.1021/acsomega.0c01433
27. Li J., Wang L., Xu X. et al. Local laser annealing
for amorphous/polycrystalline silicon hybrid
photonics on CMOS. Opt. Laser Technol. 2025.
181. P. 111799.
https://doi.org/10.1016/j.optlastec.2024.111799
28. Dmytruk I.M., Berezovska N.I., Hrabovskyi Ye.S.
et al. The influence of ultrafast laser processing on
morphology and optical properties of Au-GaAs
composite structure. SPQEO. 2024. 27. P. 261-268.
https://doi.org/10.15407/spqeo27.03.261
29. Bandhu H., Ashok P., Khandapu D.P. et al.
Lithography-free fabrication of vanadium dioxide
and its devices using direct laser writing. Opt. Laser
Technol. 2023. 167. P. 109673.
https://doi.org/10.1016/j.optlastec.2023.109673
30. Wang B., Peng R., Wang X. et al. Ultrafast,
kinetically limited, ambient synthesis of vanadium
dioxides through laser direct writing on ultrathin
chalcogenide matrix. ACS Nano. 2021. 6, No 15.
P. 10502-10513.
https://doi.org/10.1021/acsnano.1c03050
31. Valakh M.Ya., Yukhymchuk V.O., Dzhagan V.M.
et al. Variation of the metal-insulator phase
transition temperature in VO 2 : An overview of
some possible implementation methods. SPQEO.
2024. 27. P. 136-150.
https://doi.org/10.15407/spqeo27.02.136
32. Tsiamis A., Li Y., Dunare C., Marland J.R.K. et al.
Comparison of conventional and maskless
lithographic techniques for More than Moore post-
processing of foundry CMOS chips. J. Microelec-
tromechanical Syst. 2020. 29, No 5. P. 1245-1252.
https://doi.org/10.1109/JMEMS.2020.3015964
33. Deng Q., Yang Y., Gao H. et al. Fabrication of
micro-optics elements with arbitrary surface profiles
based on one-step maskless grayscale lithography.
Micromachines. 2017. 8, No 10. P. 314.
https://doi.org/10.3390/mi8100314
34. Petrov V.V., Kryuchyn A.A., Gorbov I.V. et al.
Formation of submicron relief structures on the
surface of sapphire substrates. Phys. Chem. Solid
State. 2023. 24, No 2. P. 298-303.
https://doi.org/10.15330/pcss.24.2.298-303
35. Khan M. S., Lachmayer R., Roth B. Maskless
lithography for versatile and low cost fabrication of
polymer based micro optical structures. OSA
Continuum. 2020. 3, No 10. P. 2808-2816.
https://doi.org/10.1364/OSAC.400056
36. Yarema O., Yarema M., Moser A. et al. Compo-
sition- and size-controlled I-V-VI semiconductor
nanocrystals. Chem. Mater. 2020. 32. P. 2078-2085.
https://doi.org/10.1021/acs.chemmater.9b05191
37. Liu M., Yazdani N., Yarema M. et al. Colloidal
quantum dot electronics. Sargent Nature
Electronics. 2021. 4. P. 548-558.
https://doi.org/10.1038/s41928-021-00632-7
38. Antolini F. Direct optical patterning of quantum
dots: One strategy, different chemical processes.
Nanomaterials. 2023. 13, No 13. P. 2008.
https://doi.org/10.3390/nano13132008
39. Ozdemir R., Avermaet H. V., Erdem O. et al.
Quantum dot patterning and encapsulation by
maskless lithography for display technologies. ACS
Appl. Mater. Interfaces. 2023. 15, No 7. P.
9629-9637. https://doi.org/10.1021/acsami.2c20982
40. Antolini F., Limosani F., Carcione R. Direct laser
patterning of CdTe QDs and their optical properties
control through laser parameters. Nanomaterials.
2022. 12, No 9. P. 1551.
https://doi.org/10.3390/nano12091551
41. Pan J., Cho H., Coropceanu I. et al. Stimuli-
responsive surface ligands for direct lithography of
functional inorganic nanomaterials. Acc. Chem. Res.
2023. 56, No 17. P. 2286-2297.
https://doi.org/10.1021/acs.accounts.3c00226
42. Wu H., Wang Y., Yu J. et al. Direct heat-induced
patterning of inorganic nanomaterials. J. Am. Chem.
Soc. 2022. 144, No 23. P. 10495-10506.
https://doi.org/10.1021/jacs.2c03672
43. Jamaatisomarin F., Chen R., Hosseini-Zavareh S.
et al. Laser scribing of photovoltaic solar thin films
J. Manuf. Mater. Process. 2023. 7, No 3. P. 94.
https://doi.org/10.3390/jmmp7030094
44. Harinarayana V., Shin Y.C. Two-photon
lithography for three-dimensional fabrication in
micro/nanoscale regime: a comprehensive review.
Opt. Laser Technol. 2021. 142. P. 107180.
https://doi.org/10.1016/j.optlastec.2021.107180
| |
|
|