Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (2) P. 026-033 (2006).
DOI: https://doi.org/10.15407/spqeo9.02.026


References

1. M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related phenomena. Oxford University Press, Oxford, 1978.
2. V.M. Fridkin, Ferroelectrics semiconductors. Consultant Bureau, New-York and London, 1980.
3. A.N. Morozovska, E.A. Eliseev, V.V. Obukhovsky // Ferroelectrics 288, p. 265-275 (2003).
https://doi.org/10.1080/00150190390211387
4. A. Agronin, Y. Rosenwaks, and G. Rosenman // Appl. Phys. Lett. 85, p. 452-454 (2004).
https://doi.org/10.1063/1.1772858
5. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, Y. Rosenwaks and G. Rosenman // Phys. Rev. Lett. 90, 107601-4 (2003).
https://doi.org/10.1103/PhysRevLett.90.107601
6. K. Fujimoto, Y. Cho // Appl. Phys. Lett. 83, p.5265-5267 (2003).
https://doi.org/10.1063/1.1635961
7. P. Paruch, T. Tybell, J.-M. Triscone // Appl. Phys. Lett. 79, p. 530-532 (2001).
https://doi.org/10.1063/1.1388024
8. C. Durkan, M. E. Welland, D.P. Chu, and P. Mig-liorato // Phys. Rev. B 60, p. 16198-16204 (1999).
https://doi.org/10.1103/PhysRevB.60.16198
9. C.H. Ahn, K.M. Rabe, and J.-M. Triscone // Science 303, p. 488-490 (2004).
https://doi.org/10.1126/science.1092508
10. T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone // Phys. Rev. Lett. 89, 097601-4 (2002).
11. L.M. Eng, M. Bammerlin, Ch. Loppacher, M. Guggisberg, R. Bennewitz, R. Luthi, E. Meyer, Th. Huser, H. Heinzelmann and H.-J. Guntherodt // Ferroelectrics 222, p. 153-159 (1999).
https://doi.org/10.1080/00150199908014811
12. Y. Rosenwaks, D. Dahan, M. Molotskii, and G. Rosenman // Appl. Phys. Lett. 86, 012909-3 (2005).
https://doi.org/10.1063/1.1847711
13. S.V. Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, and J.H. Ferris // Adv. Mater. 16, p. 795-799 (2004).
https://doi.org/10.1002/adma.200305702
14. J.F. Scott, Ferroelectric memories. Springer, Berlin and Heidelberg, 2000.
https://doi.org/10.1007/978-3-662-04307-3
15. R. Landauer // J. Appl. Phys., 28p. 227-234 (1957).
https://doi.org/10.1063/1.1722712
16. M. Molotskii // J.Appl. Phys. 93p. 6234-6237 (2003).
https://doi.org/10.1063/1.1567033
17. A.N. Morozovska, E.A. Eliseev // Phys. status solidi (b) 242, p. R79-R81 (2005).
https://doi.org/10.1002/pssb.200541008
18. A.N. Morozovska, E.A. Eliseev // E-print archive cond-mathttp://arxiv.org/cond-mat/0508045 (2005).
19. A.N. Morozovska, E.A. Eliseev // E-print archive cond-mathttp://arxiv.org/cond-mat/0509450 (2005).
20. A.N. Morozovska, E.A. Eliseev // J. Phys.: Condens. Matter. 16, p. 8937-8956 (2004).
https://doi.org/10.1088/0953-8984/16/49/010
21. A.N. Morozovska, E.A. Eliseev // Phys. status solidi (b) 242, p. 947-961 (2005).
https://doi.org/10.1002/pssb.200402107
22. A.N. Morozovska, E.A. Eliseev // Physica B, 355,p. 236-243 (2005).
https://doi.org/10.1016/j.physb.2004.10.097
23. X. Li, A. Mamchik, I.-W. Chen // Appl. Phys. Lett. 79, p. 809-811 (2001).
https://doi.org/10.1063/1.1390326
24. B. Wang, and C.H. Woo // J. Appl. Phys. 94, p. 4053-4059 (2003).
https://doi.org/10.1063/1.1603345
25. M. Molotskii // J. Appl. Phys. 97, p. 014109-8 (2005).
https://doi.org/10.1063/1.1823028
26. S.V. Kalinin, E. Karapetian, M. Kachanov // Phys. Rev. B 70184101-24 (2004).
27. G.I. Rosenman, E.I. Boikova, Yu.L. Chepelev // Phys. status solidi (a) 69, p. K1 73 - K1 77 (1982).
https://doi.org/10.1002/pssa.2210690145
28. H. Kohlstedt, N.A. Pertsev, J. Rodrigues Contreras, R. Waser // Phys. Rev. B 72, 125341-10 (2005).
https://doi.org/10.1103/PhysRevB.72.125341
29. M. Grossmann, O. Lonse, D. Bolten, U. Boettger, R. Waser // J. Appl. Phys. 92, p. 2680-2696 (2002).
https://doi.org/10.1063/1.1498966
30. T. Tybell, C.H. Ahn, J.-M. Triscone // Appl. Phys. Lett. 75, p. 856-858 (1999).
https://doi.org/10.1063/1.124536
31. F. Felten, G.A.Schneider, J. Munoz Saldana, S.V. Kalinin // J. Appl. Phys. 96 p. 563-568 (2004).
https://doi.org/10.1063/1.1758316
32. J. Jang, G.C. Schatz, and M.A. Ratner // J. Chem. Phys.120, p. 1157-1160 (2004).
https://doi.org/10.1063/1.1640332
33. R.C. Miller, G. Weinreich // Phys. Rev.117, p. 1460-1466 (1960).
https://doi.org/10.1103/PhysRev.117.1460
34. S. Poykko, D.J. Chadi // Appl. Phys. Lett. 75, p. 2830-2832 (1999).
https://doi.org/10.1063/1.125164
35. B. Meyer, D. Vanderbilt // Phys. Rev. B 65, 104111-11 (2002).
https://doi.org/10.1103/PhysRevB.65.104111
36. J. Padilla, W. Zhong, D. Vanderbilt // Phys. Rev. B 53, p. R5969-R5973 (1996).
https://doi.org/10.1103/PhysRevB.53.R5969
37. C. Lichtensteiger, J.-M. Triscone, J. Junquera, P. Ghosez // E-print archive cond-mat http://arxiv.org/cond-mat/0404228 (2004).
38. D.D. Fong, G.B. S.K. Stephenson, Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson // Science 304, p. 1650-1653 (2004).
39. T.J. Yang, U. Mohideen // Physics Letters A, 250, p. 205-210 (1998).
https://doi.org/10.1016/S0375-9601(98)00666-5
40. D.A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P.J. Swart // Phys. Rev. B 71, 184110-11 (2005).
https://doi.org/10.1103/PhysRevB.71.184110
41. M.D. Glinchuk, E.A. Eliseev, V.A. Stephanovich // Physica B 332, p. 356-370 (2002).
https://doi.org/10.1016/S0921-4526(02)01271-1
42. M.D. Glinchuk, A.N. Morozovska // J. Phys.: Condens. Matter. 16,p. 3517-3531 (2004).
https://doi.org/10.1088/0953-8984/16/21/002
43. L.E. Cross, Ferroelectric ceramics: Tailoring properties for specific application. In: Ferroelectric ceramics / Ed. N. Setter. Birkhauser Verlag, Basel, 1993.