Semiconductor Physics, Quantum Electronics and Optoelectronics, 11 (2) P. 101-123 (2008).
DOI: https://doi.org/10.15407/spqeo11.02.101


References

1. M.A. Foad, D. Jennings, Formation of ultrashallow junction by ion implantation and RTA // Solid State Technol. 12, p. 43-54 (1998).
2. T.P. Ma, W.H.-L. Ma, Effect of RF annealing on excess charge centers in MIS dielectrics // IEEE J. Solid State Circ. SC-13, N 4, p. 445 (1978).
https://doi.org/10.1109/JSSC.1978.1051075
3. S.D.S. Malhi, Characteristics and three-dimensional integration of MOSFET's in small grain LPCVD polycrystalline silicon // IEEE Trans. Electron. Devices, ED-32, N 2, p. 252 (1985).
https://doi.org/10.1109/T-ED.1985.21939
4. Y.S. Tsuo, J.B. Milstein, Recent results on hydrogen passivation of silicon sheet solar cells // J. Appl. Phys. 57 (12), p. 5523 (1985).
https://doi.org/10.1063/1.334830
5. A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y.A. Ono, T. Suzuki, K. Miyata, H. Kawakami, High-performance low-temperature polySi n-channel TFT's for LCD // IEEE Trans. Electron. Dev. 36 (2), p. 351 (1989).
https://doi.org/10.1109/16.19936
6. D. Pribat, F. Plais, P. Legagneux, T. Kretz, R. Stroh, O. Huet, C. Walaine, M. Magis, N. Jiang, M.C. Hugon, B. Agius, Low temperature polysilicon TFTs for active matrix LCDs // Rev. Technique Thomson-CSF, 26 (1), p. 73 (1994).
7. J.M. Hwang, D.K. Schroder, W.J. Biter, Deep levels introduced into silicon during hydrogen plasma annealing // J. Appl. Phys. 57 (12), p. 5275 (1985).
https://doi.org/10.1063/1.335270
8. T.P. Ma, W.H.-L. Ma, The effect of RF annealing upon electron-beam irradiated MIS structures // Solid State Electron. 22 (4), p. 663 (1979).
https://doi.org/10.1016/0038-1101(79)90141-2
9. V.S. Lysenko, T.N. Sytenko, Q.V. Snitko, V.I. Zimenko, A.N. Nazarov, I.N. Osiyuk, T.E. Rudenko, I.P. Tyagulskii, Interrelation between surface states and transition layer defects in Si-SiO2 structures // Solid State Communs 57 (3), p. 171 (1986).
https://doi.org/10.1016/0038-1098(86)90132-8
10. M.Ya. Valakh, V.A. Yukhimchuk, V.Ya. Bratus', A.A. Konchits, P.L.F. Hemment, T. Komoda, Optical and electron paramagnetic resonance study of light-emitting Si+ ion implanted silicon dioxide layers // J. Appl. Phys. 85 (1), p. 168-173 (1999).
https://doi.org/10.1063/1.369464
11. I.Z. Indutnyy, V.S. Lysenko, I.Yu. Maidanchuk, V.I. Min'ko, A.N. Nazarov, A.S. Tkachenko, P.E. Shepeliavyi, V.A. Dan'ko, Effect of chemical and radio-frequency plasma treatment on photoluminescence of SiOx films // Semiconductor Physics, Quantum Electronics & Optoelectronics 9 (1), p. 9-13 (2006).
12. V.P. Kunets, N.R. Kulish, V.V. Strelchuk, A.N. Nazarov, A.S. Tkachenko, V.S. Lysenko, M.P. Lisitsa, CdSSe quantum dots: effect of the hydrogen RF plasma treatment on exciton luminescence // Physica E 22, p. 804-807 (2004).
https://doi.org/10.1016/j.physe.2003.09.037
13. J.L. Benton, C.J. Doherty, S.D. Ferris, D.L. Flamm, L.C. Kimerling, H.L. Leamy, Hydrogen passivation of point defects in silicon // Appl. Phys. Lett. 36 (8), p. 670 (1980).
https://doi.org/10.1063/1.91619
14. V.S. Lysenko, M.M. Lokshin, A.N. Nazarov, T.E. Rudenko, A.S. Tkachenko, Radio-frequency annealing of defects in implanted MIS-structures // Sov. Techn. Phys. Lett. 9 (7), p. 343 (1983).
15. M.Ya. Valakh, V.S. Lysenko, A.N. Nazarov, G.Yu. Rudko, A.S. Tkachenko, N.I. Shakhraychuk, Enhanced activation of implanted phosphorus in silicon under of plasma treatment // Nucl. Instr. and Meth. Phys. Res. B 44, p. 146-148 (1989).
https://doi.org/10.1016/0168-583X(89)90420-5
16. V.V. Artamonov, V.S. Lysenko, A.N. Nazarov, B.D. Nichiporuk, V.V. Streltchuk, M.Ya. Valakh, Radio-frequency plasma treatment and thermal annealing in implanted Si: Raman study // Phys. status solidi (a) 120 (2), p. 475 (1990).
https://doi.org/10.1002/pssa.2211200220
17. V.V. Artamonov, V.S. Lysenko, A.N. Nazarov, V.V. Streltchuk, M.Ya. Valakh, I.M. Zaritskii, Relaxation of amorphous structure of implanted Si under RF plasma treatment: Raman and EPR study // Semicond. Sci. Technol. 6 (1), p. 1 (1990).
https://doi.org/10.1088/0268-1242/6/1/001
18. T.P. Ma, M.R. Chin, RF annealing mechanisms in metal-oxide-semiconductor structures - an experimental simulation // J. Appl. Phys. 51 (10), p. 5458 (1980).
https://doi.org/10.1063/1.327503
19. M.R. Chin, T.P. Ma, Voltage and frequency dependence of simulated plasma annealing in metalSiO2 -Si strucrures // Appl. Phys. Lett. 40 (6), p. 490 (1982).
https://doi.org/10.1063/1.93153
20. V.S. Lysenko, A.N. Nazarov, S.A. Valiev, I.M. Zaritskii, T.E. Rudenko, A.S. Tkachenko, EPR and TSCR investigations of implanted Al-SiO2-Si systems treated with RF plasma discharge // Phys. status solidi (a) 113 (2), p. 655 (1989).
https://doi.org/10.1002/pssa.2211130248
21. A. Chantre, S.J. Pearton, L.C. Kimerling, K.D. Cummings, W.L. Dantremond-Smith, Interaction of hydrogen and thermal donor defects in silicon // Appl. Phys. Lett. 50 (9), p. 513 (1987).
https://doi.org/10.1063/1.98144
22. J.I. Pankov, Hydrogen neutralization of defects in silicon // Cryst. Latt. Def. and Amorph. Mat. 11, p. 203 (1985).
23. S.J. Pearton, J.W. Corbett, T.S. Shi, Hydrogen in crystalline semiconductors // Appl. Phys. A 43 (3), p. 153 (1987).
https://doi.org/10.1007/BF00615975
24. M. Capizzi, A. Mittiga, Hydrogen in silicon: diffusion and shallow impurity deactivation // Physica B 146 (1), p. 19 (1987).
https://doi.org/10.1016/0378-4363(87)90048-9
25. J. Chavallier, M. Aucoutarier, Hydrogen in crystalline semiconductors // Ann. Rev. Mater. Sci. 18, p. 219 (1988).
https://doi.org/10.1146/annurev.ms.18.080188.001251
26. E.E. Heller, Hydrogen in crystalline semiconductors // Semicond. Sci. Technol. 6 (2), p. 73 (1991).
https://doi.org/10.1088/0268-1242/6/2/001
27. R. Jones, B.J. Coomer, J.P. Goss, B. Hourahine, A. Resende, The interaction of hydrogen with deep level defects in silicon // Solid State Phenomena 71, p. 173-249 (2000).
https://doi.org/10.4028/www.scientific.net/SSP.71.173
28. V.S. Lysenko, A.N. Nazarov, M.Ya. Valakh, Annealing and ordering of Si ion-implanted surface layers by RF plasma discharge, In: Ion Implantation and Ion Beam Equipment, ed. by D.S. Karpuzov, I.V. Katardjiev, S.S. Todorov. World Sci., Singapore, 1991, p. 216.
29. S.M. Myers, M.I. Baskes, H.M. Birnbaum, J.W. Corbett, G.G. DeLeo, S.K. Estreicher, E.E. Heller, P. Jena, N.M. Johnson, R. Kirchheim, S.J. Pearton, M.J. Stavola, Hydrogen interactions with defects in crystalline solids // Rev. Mod. Phys. 64 (2), p. 559 (1992).
https://doi.org/10.1103/RevModPhys.64.559
30. S.J. Pearton, J.W. Corbett, M.J. Stavola, Hydrogen in Crystalline Semiconductors. Springer, Berlin, 1992.
https://doi.org/10.1007/978-3-642-84778-3
31. Proc. of 20th International Conference on the Physics of Semiconductors, Thessaloniki, Greece, 1990.
32. Proc. of 6th Trieste Semiconductor Symposium "Hydrogen in Semiconductors. Bulk and Surface Properties" // Physica B 170 (3) (1991).
33. Defect and Impurity Engineered Semiconductors and Devices, Eds. S. Ashok, J. Chevallier, K. Sumino, B.L. Sopori and W. Gotz, MRS Symp. // Proc. 378, MRS Spring Meeting, San Francisco, CA, 1995.
34. Hydrogen in Semiconductors and Metals, Eds. N.H. Nickel, W.B. Jackson, R.C. Bowman and R.G. Leisure, MRS Symp. // Proc. 513, MRS Spring Meeting, San Francisco, CA, 1998.
35. A. Szekeres, S.S. Simeonov, E. Kafedjiiska, RF plasma influence on shallow and deep levels in crystalline silicon // Physica B 170 (3), p. 231-234 (1991).
https://doi.org/10.1016/B978-0-444-89138-9.50030-9
36. N.M. Johnson, Neutralization of donor dopants and formation of hydrogen induced defects in n-type silicon // Semiconductor and Semimetal 34, ed. by J.I. Pankov and N.M. Johnson, Ch. 7, p. 113, Academic Press, New York, 1991.
https://doi.org/10.1016/S0080-8784(08)62862-8
37. D.V. McGaughan, R.A. Kushner, Degradation of oxide films due to radiation effects in exposure to plasma in sputter deposition and backsputtering // Proc. IEEE 62 (9), p. 1236 (1974).
https://doi.org/10.1109/PROC.1974.9602
38. VLSI Technology, ed. by S.M. Sze. McGraw-Hill, New York, 1983.
39. S. Alexandrova, A. Szekeres, The effect of RF plasma upon thermal SiO2 // Bulg. J. Phys. 11 (5), p. 499 (1984).
40. A.N. Nazarov, V.S. Lysenko, A.S. Tkachenko, I.V. Gavgiljuk, M.I. Gorodyskii, S. Mikhaylov, V.A. Skryshevskii, Modification of SiO2 films of SiO2 -Si structures under plasma treatment // Proc. of the 9th All-Union conference "Particle interactions with solid state", Moscow, 1989, p. 44 (in Russian).
41. A.N. Nazarov, V.I. Kilchitska, I.P. Barchuk, A.S. Tkachenko, S. Ashok, Radio frequency plasma annealing of positive charge generated by Fowler-Nordheim electron injection in buried oxide in silicon // J. Vac. Sci. Technol. B 18 (3), p. 1254- 1261 (2000).
https://doi.org/10.1116/1.591371
42. G.S. Oehrlein, Reactive-ion etching // Physics Today, N 10, p. 26 (1986).
https://doi.org/10.1063/1.881066
43. O.O. Awadelkarim, P.I. Mikulan, T. Gu, R.A. Ditizio, S.J. Fonash, Hydrogen penetration, Si defect generation abd there interaction during CHF3/O2 contact etching // IEEE Electron. Dev. Lett. 15 (3), p. 85 (1994).
https://doi.org/10.1109/55.285394
44. V.S. Lysenko, A.N. Nazarov, G.A. Naumovets, V.B. Popov, A.S. Tkachenko, Manifestation of hydrogen in Al-SiO2 -Si structures subjected to a RF plasma annealing // Phys. status solidi (a) 112 (1), p. K9 (1989).
https://doi.org/10.1002/pssa.2211120163
45. C. Kiseilowski-Kemmerich, W. Beger, Hydrogen desorption from crystalline silicon and its modification due to the presence of dislocations // J. Appl. Phys. 66 (2), p. 552 (1989).
https://doi.org/10.1063/1.343572
46. A.D. Marwick and D.R. Young, Measurements of hydrogen in metal-oxide-semiconductor structures using nuclear reaction profilling // J. Appl. Phys. 63(7), p. 2291 (1988).
https://doi.org/10.1063/1.341043
47. M.A. Biere, D.A. Braunig, A quantitative investigation of hydrogen in metal-oxide-silicon system using NRA // IEEE Trans. Nucl. Sci., NS37 (6), p. 1658 (1990).
https://doi.org/10.1109/23.101262
48. J. Krauser, A. Weidinger, D. Braunig, Hydrogen distribution at the oxide/silicon interface reflecting the microscopic structure of the near-interface region, In: The Physics and Chemistry of SiO2 and Si-SiO2 Interface-3, Eds. H.Z. Massoud, E.H. Poindexter and C.R. Helms. ECS Inc., NJ, 1996, V.96-1, p. 184.
49. A.G. Revesz, The role of hydrogen in SiO2 films on silicon // J. Electrochem. Soc. 126 (1), p. 122 (1979).
https://doi.org/10.1149/1.2128967
50. R. Gale, F.J. Feigl, C.W. Magee, D.R. Yung, Hydrogen migration under avalanch injection of electrons in Si metal-oxide-semiconductor capacitors // J. Appl. Phys. 54 (12), p. 6938 (1983).
https://doi.org/10.1063/1.332009
51. C.T. Sah, J.Y.-C. Sun, J.J.-T. Tzou, Study of the atomic models of three donor-like defects in silicon metal-oxide-semiconductor structures from their gate material and process dependencies // J. Appl. Phys. 55(6), p. 1525 (1984).
https://doi.org/10.1063/1.333411
52. C.T. Sah, S.C.S. Pan, S.C.H. Heu, Hydrogenation and annealing kinetics of group-3 acceptors in oxidized silicon // J. Appl. Phys. 57(12), p. 5148 (1985).
https://doi.org/10.1063/1.335249
53. S. Dadgar, C.C.-H. Hsu, S.C-.S. Pan, C.T. Sah, Hydrogenation and annealing kinetics in boronand aluminum-doped silicon // J. Appl. Phys. 60(4), p. 1422 (1986).
https://doi.org/10.1063/1.337320
54. D. Ballutaud, A. Boutry-Forveille, A. Nazarov, Hydrogen thermal stability in buried oxides of SOI structures // Microelectronics Engineering 48, p. 359-362 (1999).
https://doi.org/10.1016/S0167-9317(99)00405-0
55. A. Boutry-Forveille, A. Nazarov, D. Ballutaud, Hydrogen as a diagnostic tool in analyzing SOI structures, In: Perspectives, Science and Technologies for Novel Silicon-On-Insulator Devices, Eds. P.L.F. Hemment et al., Kluwer, Dordrecht, 2000, p. 179-186.
https://doi.org/10.1007/978-94-011-4261-8_16
56. A. Nazarov, Hydrogen and high-temperature charge instability of SOI structures and MOSFETs, in Science and Technology of Semiconductor-OnInsulator Structures and Devices Operating, In: A Harsh Environment, ed. by D. Flandre et al. Kluwer, Dordrecht, 2005, p. 121-132.
https://doi.org/10.1007/1-4020-3013-4_13
57. V.S. Lysenko, M.M. Lokshin, A.N. Nazarov, T.E. Rudenko, RF plasma annealing of implanted MIS structures // Phys. status solidi (a) 88 (2), p. 705 (1985).
https://doi.org/10.1002/pssa.2210880238
58. S. Alexandrova, A. Szeceres, W. Fussel, H. Fleatner, RF plasma annealing effect at the wet oxidized SiO2 /Si interface // Phys. status solidi (a) 98 (2), p. 645 (1986).
https://doi.org/10.1002/pssa.2210980239
59. P.L. Castro, B.E. Deal, Low-temperature reduction of fast surface states associated with thermally oxidized silicon // J. Electrochem. Soc. 118 (2), p. 280 (1971).
https://doi.org/10.1149/1.2408016
60. T.W. Hickmott, Annealing of surface states in polycrystalline-silicon-gate capacitors // J. Appl. Phys. 48 (2), p. 723 (1977).
https://doi.org/10.1063/1.323662
61. M.L. Reed, J.D. Plummer, Chemistry of Si-SiO2 interface trap annealing // J. Appl. Phys. 63 (12), p. 5776 (1988).
https://doi.org/10.1063/1.340317
62. K.L. Brower, S.M. Myers, Chemical kinetics of hydrogen and (111) Si-SiO2 interface defects // Appl. Phys. Lett. 57 (2), p. 162 (1990).
https://doi.org/10.1063/1.103971
63. E. Cartier, J.H. Stathis and D.A. Buchanan, Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen // Appl. Phys. Lett. 63 (11), p. 1510 (1993).
https://doi.org/10.1063/1.110758
64. S. Alexandrova, A. Szekeres, Charged defects in wet SiO2-Si structure modified by RF oxygen plasma treatment // Phys. status solidi (a) 171 (2), p. 487 (1999).
https://doi.org/10.1002/(SICI)1521-396X(199902)171:2<487::AID-PSSA487>3.0.CO;2-0
65. V.S. Lysenko, T.N. Sytenko, V.I. Zimenko, O.V. Snitko, Investigation of traps in the transition region of Si-SiO2 structures of cryogenic temperature // Phys. status solidi (a) 71 (2), p. 619 (1982).
https://doi.org/10.1002/pssa.2210710239
66. R.B. Lauglin, J.D. Joannopoulos, C.A. Murray, K.J. Herhnett, T.J. Greytak, Intrinsic surface phonon in porous glass // Phys. Rev. Lett. 40 (7), p. 461 (1978).
https://doi.org/10.1103/PhysRevLett.40.461
67. E.H. Nicollian, J.R. Brews, MOS Physics and Technology. Wiley, New York, 1982.
68. A.N. Nazarov, V.S. Lysenko, S.N. Mikhaylov, A.S. Tkachenko, M.I. Pavlyuk, A.N. Molostvov and V.I. Kilchitskaya, RF plasma treatment effect on the charge transportation and accumulation in oxide silicon of Al-polySi-SiO2 -Si structures // Mikroelektronika 22 (6), p. 15 (1993) (in Russian).
69. J. Nissan-Cohen, The effect of hydrogen on hot carrier and radiation immunity of MOS devices // Appl. Surf. Sci. 39 (1), p. 511 (1989).
https://doi.org/10.1016/0169-4332(89)90468-6
70. J. Bos, M. Hendriks, Plasma-induced fixed oxide charge // J. Appl. Phys. 66 (3), p. 1244 (1989).
https://doi.org/10.1063/1.344449
71. V.S. Lysenko, A.N. Nazarov, I.N. Osiyuk, V.I. Turchanikov, Transformation in Si-SiO2 -Al structures under RF plasma treatment // Appl. Surf. Sci. 39 (1), p. 388 (1989).
https://doi.org/10.1016/0169-4332(89)90455-8
72. A.N. Nazarov, J.N. Vovk, I.N. Osiyuk, A.S. Tkachenko, I.P. Tyagulskii, V.S. Lysenko, T. Gebel, L. Rebohle, W. Skorupa, R.A. Yankov, The effect of radio-frequency plasma treatment on the electroluminescent properties of violet lightemitting germanium implanted metal-oxide- semiconductor structures // Mater. Sci. and Eng. B 124-125, p. 458-461(2005).
https://doi.org/10.1016/j.mseb.2005.08.045
73. A.N. Nazarov, W. Skorupa, Ja.N. Vovk, I.N. Osiyuk, A.S. Tkachenko, I.P. Tyagulskii, V.S. Lysenko, T. Gebel, L. Rebohle, R.A. Yankov, T.M. Nazarova, Modification of the electroluminescence and charge trapping in germanium implanted metal oxide silicon light emitting diodes with plasma treatment // Semiconductor Physics, Quantum Electronics & Optoelectronics 8 (1), p. 90-94 (2005).
74. G.A. Scoggan, T.P. Ma, Effect of electron-beam radiation on MOS structures as influenced by silicon dopant // J. Appl. Phys. 48 (1), p. 294 (1977).
https://doi.org/10.1063/1.323376
75. E.H. Nicollian, J.R. Brews, MOS Physics and Technology. Wiley, New York, 1982.
76. R.A. Weeks, Paramagnetic spectra of E'2 centers in crystalline silica // Phys. Rev. 130(2), p 570 (1963).
https://doi.org/10.1103/PhysRev.130.570
77. P.J. Caplan, J.N. Helbert, B.E. Wagner, E.H. Poindexter, Paramagnetic defects in silicon/silicon dioxide systems // Surf. Sci. 54 (1), p. 33 (1976).
https://doi.org/10.1016/0039-6028(76)90085-6
78. P.M. Lenahan, W.L. Warren, P.V. Dressendorfer, R.E. Mikawa, Generation of paramagnetic point defect in silicon dioxide films on silicon through electron injection and exposure to ionizing radiation // Zeitschrift Phys. Chem. Nene Folge, Bd151, S. 235 (1987).
https://doi.org/10.1524/zpch.1987.151.Part_1_2.235
79. J.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI. Kluwer, Dordrecht, 1991.
https://doi.org/10.1007/978-1-4757-2121-8
80. A.N. Nazarov, Problems of radiation hardness of SOI structures and devices, In: Physical and Technical Problems of SOI structures and Devices, ed. by J.P. Colinge et al. Kluwer, Dordrecht, 1995, p. 217-239.
https://doi.org/10.1007/978-94-011-0109-7_20
81. A.N. Nazarov, V.I. Kilchytska, Y. Houk, D. Ballutaud, Mechanisms of positive charge generation in buried oxide of UNIBOND and separation by implanted oxygen silicon-on-insulator structures during high-field electron injection // J. Appl. Phys. 94 (3), p. 1823-1832 (2003).
https://doi.org/10.1063/1.1589591
82. L.C. Kimmerling, Recombination enhanced defect reactions // Solid State Electron. 21 (11/12), p. 1391 (1978).
https://doi.org/10.1016/0038-1101(78)90215-0
83. T. Takagahara, K. Takeda, Theory of the quantum comfinement effect on exciton in quantum dots of indirect-gap materials // Phys. Rev. B 46 (23), p. 15578-15581 (1992).
https://doi.org/10.1103/PhysRevB.46.15578
84. D. Kovalev, H. Heckler, G. Polisski, F. Koch, Optical properties of Si nanocrystals // Phys. status solidi (b) 215 (2), p. 871-931 (1999).
https://doi.org/10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO;2-9
85. V.A. Dan'ko, I.Z. Indutnyi, V.S. Lysenko, I.Yu. Maidanchuk, V.I. Min'ko, A.N. Nazarov, A.S. Tkachenko, P.E. Shepelyavyi, Kinetics of structural and phase transformations in thin SiOx films in the course of a rapid thermal annealing // Semiconductors 39 (10), p. 1197-1203 (2005).
https://doi.org/10.1134/1.2085270
86. T. Komoda, J.P. Kelly, R.M. Gwilliam, P.L.F. Hemment, B.J. Sealy, Effect of the gas ambient on the intensity of the visible photoluminescence from Si microcrystallites in a SiO2 matrix formed by ion implantation // Nucl. Instrum. Meth. Phys. Res. B 112, p. 219 (1996).
https://doi.org/10.1016/B978-0-444-82410-3.50050-3
87. I.P. Lisovskii, V.G. Litovchenko, V.B. Lozinskii, Effect of UV annealing of radiation damage in SiO2 films // Appl. Surf. Sci. 86, p. 299 (1995).
https://doi.org/10.1016/0169-4332(94)00394-7
88. V.P. Kunets, N.R. Kulish, V.V. Strelchuk, A.N. Nazarov, A.S. Tkachenko, V.S. Lysenko, M.P. Lisitsa, Enhancement of CdSSe QD exciton luminescence efficiency by hydrogen RF plasma treatment // Semiconductor Physics, Quantum Electronic & Optoelectronics 6 (2), p. 169-171 (2003).
89. L. Rebohle, J. von Borany, H. Fröb, W. Skorupa, Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements // Appl. Phys. B 70, p. 1-21 (2000).
https://doi.org/10.1007/PL00006966
90. A.N. Nazarov, I.N. Osiyuk, V.S. Lysenko, T. Gebel, L. Rebohle, W. Skorupa, Charge trapping and degradation in Ge+ ion implanted SiO2 layer during high-field electron injection // Microelectronics Reliability 42, p. 1461-1464 (2002).
https://doi.org/10.1016/S0026-2714(02)00170-1
91. A.N. Nazarov, T. Gebel, L. Rebohle, W. Skorupa, I.N. Osiyuk, V.S. Lysenko, Trapping of negative and positive charges in Ge ion implanted silicon dioxide layers subjected to high-field electron injection // J. Appl. Phys. 94 (7), p. 4440-4448 (2003).
https://doi.org/10.1063/1.1604934
92. W. Skorupa, A. Nazarov, R.A. Yankov, T. Gebel, L. Rebohle, Verfahren zur Behandlung Siliziumbasierter Lichtemitter // Deutsche Patentanmeldung DE 103 13 727.0 (2003).
93. A.N. Nazarov, I.N. Osiyuk, I.P. Tyagulskii, V.N. Torbin, T.M. Nazarova, T. Gebel, L. Rebohle, W. Skorupa, Hydrogen plasma treatment of lightemitting materials fabricated on basis of implanted SiO2 with nanocrystalline inclusions, In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, eds. D.V. Schur et al. IHSE, Kiev, 2007, p. 1050-1051.
94. Yu.Ya. Bekeris, R.B. Benders, R.P. Kalnynya, I.A. Feltyn, Structure changing, evoked by RF annealing of low-temperature SiO2 films // Izv. AN Latv. SSR. Ser. Fiz.-Tekhn. Nauki N 6, p. 97 (1984) (in Russian).
95. T.P. Ma, M.R. Chin, RF annealing of radiation - induced electron traps in MOS structures // Techn. Digest of IEDM, 1978, p. 224.
96. J.E. Shelby, Radiation effects in hydrogenimpregnated vitreous silica // J. Appl. Phys. 50 (5), p. 3702 (1979).
https://doi.org/10.1063/1.326275
97. J.D. Weeks, J.C. Tully, L.C. Kimmerling, Theory of recombination-enhanced defect reactions in semiconductors // Phys. Rev. B 12 (8), p. 3286 (1975).
https://doi.org/10.1103/PhysRevB.12.3286
98. T. Sugano, Carrier trapping in silicon MOS devices // Acta Polytech. Scand. Electr. Engineer. Ser. N 64, p. 220 (1989).
99. N.M. Johnson, D.K. Beigelsen, M.D. Moyer, Lowtemperature annealing and hydrogenation of defects at the Si-SiO2 interface // J. Vac. Sci. Technol. 19 (3), p. 390 (1981).
https://doi.org/10.1007/978-3-642-68247-6_5
100. E.E. Heller, Hydrogen in crystalline semiconductors, In: Handbook on Semiconductors, ed. by T.S. Moss, v.3, ed. by. S. Mahajain. Elselvier Science B.V., The Netherlands, 1994, p. 1515.
101. Amorphous Semiconductors, ed. by M.H. Brodsky, Topics in Appl. Phys. 36. Springer, Berlin, 1979, p. 419.
102. A.J.R. De Kock, The elimination of vacancy-claster formation in dislocation - free silicon crystals // J. Electrochem. Soc. 118 (11), p. 1851 (1971).
https://doi.org/10.1149/1.2407850
103. H.J. Stein, S.K Hahn, Hydrogen accelerated thermal donor formation in Czochralski silicon // Appl. Phys. Lett. 56 (1), p. 63 (1990).
https://doi.org/10.1063/1.102652
104. A.R. Brown, M. Claybourn, R. Murray, P.S. Nandhra, R.C. Newman, J.H. Tucker, Enhanced thermal donor formation in silicon exposed to a hydrogen plasma // Semicond. Sci. Technol. 3, p. 591 (1988).
https://doi.org/10.1088/0268-1242/3/6/013
105. Q. Guagang, H. Zonghu, The convergent effect of the annealing temperatures of electron irradiated defects in FZ silicon grown in hydrogen // Solid State Communs 53 (11), p. 975 (1985).
https://doi.org/10.1016/0038-1098(85)90472-7
106. R. Singh, S.J. Fonash, A. Rohatyi, P.R. Choudhary, J.A. Gigante, A low-temperature process for annealing extremely shallow As+implanted n+/p junction in silicon // J. Appl. Phys. 55 (4), p. 867 (1984).
https://doi.org/10.1063/1.333183
107. E.I. Terukov, B.J. Ber, V.Kh. Kudojarova, V.Ju. Davydov, A.N. Nazarov, Ja.N. Vovk, S. Ashok, Hydrogen-enhanced transformation of electrical and structural properties of thin subsurface ion implanted silicon layer in SiO2 -Si systems // Solid State Phenomena 69-70, p. 595- 601 (1999).
https://doi.org/10.4028/www.scientific.net/SSP.69-70.595
108. S.J. Pearton, Hydrogen passivation of γ-induced point defects in silicon // Phys. status solidi (a) 72 (1), K73 (1982).
https://doi.org/10.1002/pssa.2210720160
109. R. Singh, S.J. Fonash, A. Rohatyi, Interaction of low-energy implanted atomic hydrogen with slow and fast diffusing metallic impurities in Si // Appl. Phys. Lett. 49 (13), p. 800 (1986).
https://doi.org/10.1063/1.97551
110. J.I. Pankov, R.O. Wance and J.E. Berkeyheiser, Neutralization of acceptors in silicon by atomic hydrogen // Appl. Phys. Lett. 45 (10), p. 1100 (1984).
https://doi.org/10.1063/1.95030
111. N.M. Jonhson, C. Herring, D.J. Chadi, Interstitial hydrogen and neutralization of shallow-donor impurities in single-crystal silicon // Phys. Rev. Lett. 56 (7), p. 316 (1986).
https://doi.org/10.1103/PhysRevLett.56.769
112. C.G. Van de Walle, P.J.H. Denteneer, Y. Bar-Yam, S.T. Pantelides, Theory of hydrogen diffusion and reactions in crystalline silicon // Phys. Rev. B 39, (15), p. 10791 (1989).
https://doi.org/10.1103/PhysRevB.39.10791
113. H.J. Stein, Vacancies and the chemical trapping of hydrogen in silicon // Phys. Rev. Lett. 43 (14), p. 1030 (1979).
https://doi.org/10.1103/PhysRevLett.43.1030
114. C.K. Ony, G.S. Khoo, Model of two intense Si-H infrared stretching bands in FZ-Si grown in hydrogen // J. Phys. C 20 (3), p. 419 (1987).
https://doi.org/10.1088/0022-3719/20/3/012
115. B.N. Mukashev, S.G. Tokmoldin, M.F. Tamendarov, H.A. Abdulin, E.V. Chikhrai, Hydrogen passivation of dopants and radiation defects in ptype Si // Sov. Phys. Semiconductors 22 (6), p. 1020 (1988).
116. B. Tuttle, C.G. Van de Walle, J.B. Adams, Exchange of deeply traped and interstitial hydrogen in silicon // Phys. Rev. B 59, (8), p. 5493 (1999).
https://doi.org/10.1103/PhysRevB.59.5493
117. T.S. Shi, S.N. Sahu, G.S. Oehrlein, A. Hiraki, J.W. Corbett, Models of the hydrogen-related defect-impurity complexes and Si-H infrared bands in crystalline silicon // Phys. status solidi (a) 74, (2), p. 329 (1982).
https://doi.org/10.1002/pssa.2210740140
118. G.L. Gutsev, G.S. Myakenkaya, V.V. Frolov, V.B. Glazman, Nature of hydrogen bonding in SiA-center // Phys. status solidi (a) 153 (2), p. 659 (1989).
https://doi.org/10.1002/pssb.2221530224
119. B.N. Mukashev, S.Z. Tokmoldin, M.F. Tamendarov, V.V. Frolov, Hydrogen passivation of vacancy related centers in silicon // Physica B 170, p. 545 (1991).
https://doi.org/10.1016/B978-0-444-89138-9.50076-0
120. S.B. Zhang, D.J. Chadi, Microscopic structure of hydrogen-shallow-donor complexes in crystalline silicon // Phys. Rev. B 41 (6), p. 3882 (1990).
https://doi.org/10.1103/PhysRevB.41.3882
121. P.J.H. Denteneer, C.G. Van de Walle, S.T. Pantelides, Microscopic structure of the hydrogenphosphorus complexes in crystalline silicon // Phys. Rev. B 41, (6), p. 3885 (1990).
https://doi.org/10.1103/PhysRevB.41.3885
122. P. Deak, L.C. Snyder, M. Heinrich, C.T. Ortiz, J.W. Corbett, Hydrogen complexes and theit vibretions in undoped crystalline silicon // Physica B 170, p. 253 (1991).
https://doi.org/10.1016/B978-0-444-89138-9.50035-8
123. G.G. DeLeo, Theory of hydrogen-impurity complexes in semiconductors // Physica B 170, p. 295 (1991).
https://doi.org/10.1016/B978-0-444-89138-9.50043-7
124. V.S. Lysenko, A.N. Nazarov, I.M. Zaritsii, G. Sherfósó, G. Battistig, J. Gyulai, L. Dozsa, RF plasma modification of heaving destroyed ion implanted surface silicon layer // Phys. status solidi (a) 115 (1), p. 75 (1989).
https://doi.org/10.1002/pssa.2211150105
125. A.N. Nazarov, V.S. Lysenko, S.A. Valiev, M.M. Lokshin, A.S. Tkachenko, I.E. Kunitskii, Flash-lamp annealing and RF plasma annealing of Al-SiO2-Si structures // Phys. status solidi (a) 120 (2), p. 447 (1990).
https://doi.org/10.1002/pssa.2211200217
126. V.L. Vinetskii, G.A. Holodar, Radiation Semiconductor Physics. Naukova Dumka, Kiev, 1979, p. 336 (in Russian).
127. A.F. Saunders and G.T. Wright, Interface states in the silicon/silicon oxide system observed by thermally stimulated charge release // Electron. Lett. 6 (7), p. 207 (1970).
https://doi.org/10.1049/el:19700148
128. J. Bourgoin, M. Lannoo, Point Defects in Semiconductors II. Experimental Aspects. Springer, Berlin, 1983.
https://doi.org/10.1007/978-3-642-81832-5
129. H. Ryssel, I. Ruge, Ion Implantation. Wiley, New York, 1986.
130. M.L.W. Thewalt, In: Excitons. Nauka, Moscow, 1985, p. 284 (in Russian).
131. M.Ya. Valakh, V.S. Lysenko, A.N. Nazarov, G.Yu. Rudko, N.I. Shakhraychuk, Activation of the implanted impurity and transformation of radiation defects in oxidized silicon under RF plasma treatment // Phys. status solidi (a) 130 (1), p. 45 (1992).
https://doi.org/10.1002/pssa.2211300106
132. A.N. Nazarov, V.M. Pinchuk, V.S. Lysenko, T.V. Yanchuk, Quantum chemical investigations of atomic hydrogen effect on Frenkel pairs annihilation in silicon // Modelling Simul. Mater. Sci. Eng. 4, p. 323 (1996).
https://doi.org/10.1088/0965-0393/4/3/006
133. A.N. Nazarov, V.M. Pinchuk, V.S. Lysenko, T.V. Yanchuk, S. Ashok, Enhanced activation of implanted dopant impurity in hydrogenated cristalline silicon // Phys. Rev. B 58 (7), p. 3522 (1998).
https://doi.org/10.1103/PhysRevB.58.3522
134. A.N. Nazarov, V.M. Pinchuk, T.V. Yanchuk, V.S. Lysenko, Hydrogen enhanced defect reactions in silicon: interstitial atom - vacancy // Mat. Res. Soc. Symp. Proc. 510, p. 367 (1998).
https://doi.org/10.1557/PROC-510-367
135. A.N. Nazarov, V.M. Pinchuk, T.V. Yanchk, V.S. Lysenko, Ya.N. Vovk, S. Rangan, S. Ashok, V. Kudoyarova, E.I. Terukov, Hydrogen effect on enhancement of defect reactions in semiconductors: example for silicon and vacancy defects // Intern. J. Hydrogen Energy 26, p. 521-526 (2001).
https://doi.org/10.1016/S0360-3199(00)00090-2
136. S. Kar, P .Zaumseil, S. Ashok, An experimental study of ion beam and ECR hydrogenation of selfion implantation damage in silicon by admittance spectroscopy and x-ray triple crystal diffractometry // Solid State Phenomena 57-58, p. 483 (1997).
https://doi.org/10.4028/www.scientific.net/SSP.57-58.483
137. A.M. Grehov, V.M. Gun'ko, G.M. Klapchenko, Yu.P. Tsjaschenko, Local structural relaxation of hydrogenated vacancy in silicon // Sov. Phys. Solid State 27 (1), p. 285 (1985).
138. B. Hourahine, R. Jones, S. Oberg, R.C. Newman, P.R. Briddon, E. Roduner, Hydrogen molecules in silicon located at interstitial sites and trapped in voids // Phys. Rev. B 57 (20), p. R12666 (1998).
https://doi.org/10.1103/PhysRevB.57.R12666
139. D.J. Chadi, C.H. Park, Electronic properties of hydrogen-derived complexes in silicon // Phys. Rev. B 52 (12), p. 8877 (1995).
https://doi.org/10.1103/PhysRevB.52.8877
140. D. Beeman, R. Tsu, M.F. Thorpe, Structural information from the Raman spectrum of amorphous silicon // Phys. Rev. B 32 (2), p. 874 (1985).
https://doi.org/10.1103/PhysRevB.32.874
141. S.V. Koveshnikov, S.V. Nosenko, A.M. Surma, Modification of the properties of Si crystals exposed to atomic hydrogen at high temperatures // Solid State Phenomena 19, p. 165 (1991).
https://doi.org/10.4028/www.scientific.net/SSP.19-20.265
142. V.V. Aristov, S.V. Koveshnikov, S.V. Nosenko, E.B. Yakimov, A.M. Surma, Some aspects of third generation creation of the power silicon switching devices, ruled by nonplanar MOS structure // Mikroelektronika 24 (3), p. 198 (1995) (in Russian).
143. V.S. Lysenko, P.S. Kopev, A.N. Nazarov, G.A. Naumovets, V.B. Popov, A.S. Tkachenko, A.M. Vasiliev and V.M. Ustinov, Thermal reactivation of nonradiative recombination centers in hydrogenated AlxGa1-xAs:Si // Phys. status solidi (a) 139 (2), p. 541 (1993).
https://doi.org/10.1002/pssa.2211390227