Semiconductor Physics, Quantum Electronics and Optoelectronics, 11 (2) P. 101-123 (2008).
DOI:
https://doi.org/10.15407/spqeo11.02.101
References
1. M.A. Foad, D. Jennings, Formation of ultrashallow junction by ion implantation and RTA // Solid State Technol. 12, p. 43-54 (1998). | | 2. T.P. Ma, W.H.-L. Ma, Effect of RF annealing on excess charge centers in MIS dielectrics // IEEE J. Solid State Circ. SC-13, N 4, p. 445 (1978). https://doi.org/10.1109/JSSC.1978.1051075 | | 3. S.D.S. Malhi, Characteristics and three-dimensional integration of MOSFET's in small grain LPCVD polycrystalline silicon // IEEE Trans. Electron. Devices, ED-32, N 2, p. 252 (1985). https://doi.org/10.1109/T-ED.1985.21939 | | 4. Y.S. Tsuo, J.B. Milstein, Recent results on hydrogen passivation of silicon sheet solar cells // J. Appl. Phys. 57 (12), p. 5523 (1985). https://doi.org/10.1063/1.334830 | | 5. A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y.A. Ono, T. Suzuki, K. Miyata, H. Kawakami, High-performance low-temperature polySi n-channel TFT's for LCD // IEEE Trans. Electron. Dev. 36 (2), p. 351 (1989). https://doi.org/10.1109/16.19936 | | 6. D. Pribat, F. Plais, P. Legagneux, T. Kretz, R. Stroh, O. Huet, C. Walaine, M. Magis, N. Jiang, M.C. Hugon, B. Agius, Low temperature polysilicon TFTs for active matrix LCDs // Rev. Technique Thomson-CSF, 26 (1), p. 73 (1994). | | 7. J.M. Hwang, D.K. Schroder, W.J. Biter, Deep levels introduced into silicon during hydrogen plasma annealing // J. Appl. Phys. 57 (12), p. 5275 (1985). https://doi.org/10.1063/1.335270 | | 8. T.P. Ma, W.H.-L. Ma, The effect of RF annealing upon electron-beam irradiated MIS structures // Solid State Electron. 22 (4), p. 663 (1979). https://doi.org/10.1016/0038-1101(79)90141-2 | | 9. V.S. Lysenko, T.N. Sytenko, Q.V. Snitko, V.I. Zimenko, A.N. Nazarov, I.N. Osiyuk, T.E. Rudenko, I.P. Tyagulskii, Interrelation between surface states and transition layer defects in Si-SiO2 structures // Solid State Communs 57 (3), p. 171 (1986). https://doi.org/10.1016/0038-1098(86)90132-8 | | 10. M.Ya. Valakh, V.A. Yukhimchuk, V.Ya. Bratus', A.A. Konchits, P.L.F. Hemment, T. Komoda, Optical and electron paramagnetic resonance study of light-emitting Si+ ion implanted silicon dioxide layers // J. Appl. Phys. 85 (1), p. 168-173 (1999). https://doi.org/10.1063/1.369464 | | 11. I.Z. Indutnyy, V.S. Lysenko, I.Yu. Maidanchuk, V.I. Min'ko, A.N. Nazarov, A.S. Tkachenko, P.E. Shepeliavyi, V.A. Dan'ko, Effect of chemical and radio-frequency plasma treatment on photoluminescence of SiOx films // Semiconductor Physics, Quantum Electronics & Optoelectronics 9 (1), p. 9-13 (2006). | | 12. V.P. Kunets, N.R. Kulish, V.V. Strelchuk, A.N. Nazarov, A.S. Tkachenko, V.S. Lysenko, M.P. Lisitsa, CdSSe quantum dots: effect of the hydrogen RF plasma treatment on exciton luminescence // Physica E 22, p. 804-807 (2004). https://doi.org/10.1016/j.physe.2003.09.037 | | 13. J.L. Benton, C.J. Doherty, S.D. Ferris, D.L. Flamm, L.C. Kimerling, H.L. Leamy, Hydrogen passivation of point defects in silicon // Appl. Phys. Lett. 36 (8), p. 670 (1980). https://doi.org/10.1063/1.91619 | | 14. V.S. Lysenko, M.M. Lokshin, A.N. Nazarov, T.E. Rudenko, A.S. Tkachenko, Radio-frequency annealing of defects in implanted MIS-structures // Sov. Techn. Phys. Lett. 9 (7), p. 343 (1983). | | 15. M.Ya. Valakh, V.S. Lysenko, A.N. Nazarov, G.Yu. Rudko, A.S. Tkachenko, N.I. Shakhraychuk, Enhanced activation of implanted phosphorus in silicon under of plasma treatment // Nucl. Instr. and Meth. Phys. Res. B 44, p. 146-148 (1989). https://doi.org/10.1016/0168-583X(89)90420-5 | | 16. V.V. Artamonov, V.S. Lysenko, A.N. Nazarov, B.D. Nichiporuk, V.V. Streltchuk, M.Ya. Valakh, Radio-frequency plasma treatment and thermal annealing in implanted Si: Raman study // Phys. status solidi (a) 120 (2), p. 475 (1990). https://doi.org/10.1002/pssa.2211200220 | | 17. V.V. Artamonov, V.S. Lysenko, A.N. Nazarov, V.V. Streltchuk, M.Ya. Valakh, I.M. Zaritskii, Relaxation of amorphous structure of implanted Si under RF plasma treatment: Raman and EPR study // Semicond. Sci. Technol. 6 (1), p. 1 (1990). https://doi.org/10.1088/0268-1242/6/1/001 | | 18. T.P. Ma, M.R. Chin, RF annealing mechanisms in metal-oxide-semiconductor structures - an experimental simulation // J. Appl. Phys. 51 (10), p. 5458 (1980). https://doi.org/10.1063/1.327503 | | 19. M.R. Chin, T.P. Ma, Voltage and frequency dependence of simulated plasma annealing in metalSiO2 -Si strucrures // Appl. Phys. Lett. 40 (6), p. 490 (1982). https://doi.org/10.1063/1.93153 | | 20. V.S. Lysenko, A.N. Nazarov, S.A. Valiev, I.M. Zaritskii, T.E. Rudenko, A.S. Tkachenko, EPR and TSCR investigations of implanted Al-SiO2-Si systems treated with RF plasma discharge // Phys. status solidi (a) 113 (2), p. 655 (1989). https://doi.org/10.1002/pssa.2211130248 | | 21. A. Chantre, S.J. Pearton, L.C. Kimerling, K.D. Cummings, W.L. Dantremond-Smith, Interaction of hydrogen and thermal donor defects in silicon // Appl. Phys. Lett. 50 (9), p. 513 (1987). https://doi.org/10.1063/1.98144 | | 22. J.I. Pankov, Hydrogen neutralization of defects in silicon // Cryst. Latt. Def. and Amorph. Mat. 11, p. 203 (1985). | | 23. S.J. Pearton, J.W. Corbett, T.S. Shi, Hydrogen in crystalline semiconductors // Appl. Phys. A 43 (3), p. 153 (1987). https://doi.org/10.1007/BF00615975 | | 24. M. Capizzi, A. Mittiga, Hydrogen in silicon: diffusion and shallow impurity deactivation // Physica B 146 (1), p. 19 (1987). https://doi.org/10.1016/0378-4363(87)90048-9 | | 25. J. Chavallier, M. Aucoutarier, Hydrogen in crystalline semiconductors // Ann. Rev. Mater. Sci. 18, p. 219 (1988). https://doi.org/10.1146/annurev.ms.18.080188.001251 | | 26. E.E. Heller, Hydrogen in crystalline semiconductors // Semicond. Sci. Technol. 6 (2), p. 73 (1991). https://doi.org/10.1088/0268-1242/6/2/001 | | 27. R. Jones, B.J. Coomer, J.P. Goss, B. Hourahine, A. Resende, The interaction of hydrogen with deep level defects in silicon // Solid State Phenomena 71, p. 173-249 (2000). https://doi.org/10.4028/www.scientific.net/SSP.71.173 | | 28. V.S. Lysenko, A.N. Nazarov, M.Ya. Valakh, Annealing and ordering of Si ion-implanted surface layers by RF plasma discharge, In: Ion Implantation and Ion Beam Equipment, ed. by D.S. Karpuzov, I.V. Katardjiev, S.S. Todorov. World Sci., Singapore, 1991, p. 216. | | 29. S.M. Myers, M.I. Baskes, H.M. Birnbaum, J.W. Corbett, G.G. DeLeo, S.K. Estreicher, E.E. Heller, P. Jena, N.M. Johnson, R. Kirchheim, S.J. Pearton, M.J. Stavola, Hydrogen interactions with defects in crystalline solids // Rev. Mod. Phys. 64 (2), p. 559 (1992). https://doi.org/10.1103/RevModPhys.64.559 | | 30. S.J. Pearton, J.W. Corbett, M.J. Stavola, Hydrogen in Crystalline Semiconductors. Springer, Berlin, 1992. https://doi.org/10.1007/978-3-642-84778-3 | | 31. Proc. of 20th International Conference on the Physics of Semiconductors, Thessaloniki, Greece, 1990. | | 32. Proc. of 6th Trieste Semiconductor Symposium "Hydrogen in Semiconductors. Bulk and Surface Properties" // Physica B 170 (3) (1991). | | 33. Defect and Impurity Engineered Semiconductors and Devices, Eds. S. Ashok, J. Chevallier, K. Sumino, B.L. Sopori and W. Gotz, MRS Symp. // Proc. 378, MRS Spring Meeting, San Francisco, CA, 1995. | | 34. Hydrogen in Semiconductors and Metals, Eds. N.H. Nickel, W.B. Jackson, R.C. Bowman and R.G. Leisure, MRS Symp. // Proc. 513, MRS Spring Meeting, San Francisco, CA, 1998. | | 35. A. Szekeres, S.S. Simeonov, E. Kafedjiiska, RF plasma influence on shallow and deep levels in crystalline silicon // Physica B 170 (3), p. 231-234 (1991). https://doi.org/10.1016/B978-0-444-89138-9.50030-9 | | 36. N.M. Johnson, Neutralization of donor dopants and formation of hydrogen induced defects in n-type silicon // Semiconductor and Semimetal 34, ed. by J.I. Pankov and N.M. Johnson, Ch. 7, p. 113, Academic Press, New York, 1991. https://doi.org/10.1016/S0080-8784(08)62862-8 | | 37. D.V. McGaughan, R.A. Kushner, Degradation of oxide films due to radiation effects in exposure to plasma in sputter deposition and backsputtering // Proc. IEEE 62 (9), p. 1236 (1974). https://doi.org/10.1109/PROC.1974.9602 | | 38. VLSI Technology, ed. by S.M. Sze. McGraw-Hill, New York, 1983. | | 39. S. Alexandrova, A. Szekeres, The effect of RF plasma upon thermal SiO2 // Bulg. J. Phys. 11 (5), p. 499 (1984). | | 40. A.N. Nazarov, V.S. Lysenko, A.S. Tkachenko, I.V. Gavgiljuk, M.I. Gorodyskii, S. Mikhaylov, V.A. Skryshevskii, Modification of SiO2 films of SiO2 -Si structures under plasma treatment // Proc. of the 9th All-Union conference "Particle interactions with solid state", Moscow, 1989, p. 44 (in Russian). | | 41. A.N. Nazarov, V.I. Kilchitska, I.P. Barchuk, A.S. Tkachenko, S. Ashok, Radio frequency plasma annealing of positive charge generated by Fowler-Nordheim electron injection in buried oxide in silicon // J. Vac. Sci. Technol. B 18 (3), p. 1254- 1261 (2000). https://doi.org/10.1116/1.591371 | | 42. G.S. Oehrlein, Reactive-ion etching // Physics Today, N 10, p. 26 (1986). https://doi.org/10.1063/1.881066 | | 43. O.O. Awadelkarim, P.I. Mikulan, T. Gu, R.A. Ditizio, S.J. Fonash, Hydrogen penetration, Si defect generation abd there interaction during CHF3/O2 contact etching // IEEE Electron. Dev. Lett. 15 (3), p. 85 (1994). https://doi.org/10.1109/55.285394 | | 44. V.S. Lysenko, A.N. Nazarov, G.A. Naumovets, V.B. Popov, A.S. Tkachenko, Manifestation of hydrogen in Al-SiO2 -Si structures subjected to a RF plasma annealing // Phys. status solidi (a) 112 (1), p. K9 (1989). https://doi.org/10.1002/pssa.2211120163 | | 45. C. Kiseilowski-Kemmerich, W. Beger, Hydrogen desorption from crystalline silicon and its modification due to the presence of dislocations // J. Appl. Phys. 66 (2), p. 552 (1989). https://doi.org/10.1063/1.343572 | | 46. A.D. Marwick and D.R. Young, Measurements of hydrogen in metal-oxide-semiconductor structures using nuclear reaction profilling // J. Appl. Phys. 63(7), p. 2291 (1988). https://doi.org/10.1063/1.341043 | | 47. M.A. Biere, D.A. Braunig, A quantitative investigation of hydrogen in metal-oxide-silicon system using NRA // IEEE Trans. Nucl. Sci., NS37 (6), p. 1658 (1990). https://doi.org/10.1109/23.101262 | | 48. J. Krauser, A. Weidinger, D. Braunig, Hydrogen distribution at the oxide/silicon interface reflecting the microscopic structure of the near-interface region, In: The Physics and Chemistry of SiO2 and Si-SiO2 Interface-3, Eds. H.Z. Massoud, E.H. Poindexter and C.R. Helms. ECS Inc., NJ, 1996, V.96-1, p. 184. | | 49. A.G. Revesz, The role of hydrogen in SiO2 films on silicon // J. Electrochem. Soc. 126 (1), p. 122 (1979). https://doi.org/10.1149/1.2128967 | | 50. R. Gale, F.J. Feigl, C.W. Magee, D.R. Yung, Hydrogen migration under avalanch injection of electrons in Si metal-oxide-semiconductor capacitors // J. Appl. Phys. 54 (12), p. 6938 (1983). https://doi.org/10.1063/1.332009 | | 51. C.T. Sah, J.Y.-C. Sun, J.J.-T. Tzou, Study of the atomic models of three donor-like defects in silicon metal-oxide-semiconductor structures from their gate material and process dependencies // J. Appl. Phys. 55(6), p. 1525 (1984). https://doi.org/10.1063/1.333411 | | 52. C.T. Sah, S.C.S. Pan, S.C.H. Heu, Hydrogenation and annealing kinetics of group-3 acceptors in oxidized silicon // J. Appl. Phys. 57(12), p. 5148 (1985). https://doi.org/10.1063/1.335249 | | 53. S. Dadgar, C.C.-H. Hsu, S.C-.S. Pan, C.T. Sah, Hydrogenation and annealing kinetics in boronand aluminum-doped silicon // J. Appl. Phys. 60(4), p. 1422 (1986). https://doi.org/10.1063/1.337320 | | 54. D. Ballutaud, A. Boutry-Forveille, A. Nazarov, Hydrogen thermal stability in buried oxides of SOI structures // Microelectronics Engineering 48, p. 359-362 (1999). https://doi.org/10.1016/S0167-9317(99)00405-0 | | 55. A. Boutry-Forveille, A. Nazarov, D. Ballutaud, Hydrogen as a diagnostic tool in analyzing SOI structures, In: Perspectives, Science and Technologies for Novel Silicon-On-Insulator Devices, Eds. P.L.F. Hemment et al., Kluwer, Dordrecht, 2000, p. 179-186. https://doi.org/10.1007/978-94-011-4261-8_16 | | 56. A. Nazarov, Hydrogen and high-temperature charge instability of SOI structures and MOSFETs, in Science and Technology of Semiconductor-OnInsulator Structures and Devices Operating, In: A Harsh Environment, ed. by D. Flandre et al. Kluwer, Dordrecht, 2005, p. 121-132. https://doi.org/10.1007/1-4020-3013-4_13 | | 57. V.S. Lysenko, M.M. Lokshin, A.N. Nazarov, T.E. Rudenko, RF plasma annealing of implanted MIS structures // Phys. status solidi (a) 88 (2), p. 705 (1985). https://doi.org/10.1002/pssa.2210880238 | | 58. S. Alexandrova, A. Szeceres, W. Fussel, H. Fleatner, RF plasma annealing effect at the wet oxidized SiO2 /Si interface // Phys. status solidi (a) 98 (2), p. 645 (1986). https://doi.org/10.1002/pssa.2210980239 | | 59. P.L. Castro, B.E. Deal, Low-temperature reduction of fast surface states associated with thermally oxidized silicon // J. Electrochem. Soc. 118 (2), p. 280 (1971). https://doi.org/10.1149/1.2408016 | | 60. T.W. Hickmott, Annealing of surface states in polycrystalline-silicon-gate capacitors // J. Appl. Phys. 48 (2), p. 723 (1977). https://doi.org/10.1063/1.323662 | | 61. M.L. Reed, J.D. Plummer, Chemistry of Si-SiO2 interface trap annealing // J. Appl. Phys. 63 (12), p. 5776 (1988). https://doi.org/10.1063/1.340317 | | 62. K.L. Brower, S.M. Myers, Chemical kinetics of hydrogen and (111) Si-SiO2 interface defects // Appl. Phys. Lett. 57 (2), p. 162 (1990). https://doi.org/10.1063/1.103971 | | 63. E. Cartier, J.H. Stathis and D.A. Buchanan, Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen // Appl. Phys. Lett. 63 (11), p. 1510 (1993). https://doi.org/10.1063/1.110758 | | 64. S. Alexandrova, A. Szekeres, Charged defects in wet SiO2-Si structure modified by RF oxygen plasma treatment // Phys. status solidi (a) 171 (2), p. 487 (1999). https://doi.org/10.1002/(SICI)1521-396X(199902)171:2<487::AID-PSSA487>3.0.CO;2-0 | | 65. V.S. Lysenko, T.N. Sytenko, V.I. Zimenko, O.V. Snitko, Investigation of traps in the transition region of Si-SiO2 structures of cryogenic temperature // Phys. status solidi (a) 71 (2), p. 619 (1982). https://doi.org/10.1002/pssa.2210710239 | | 66. R.B. Lauglin, J.D. Joannopoulos, C.A. Murray, K.J. Herhnett, T.J. Greytak, Intrinsic surface phonon in porous glass // Phys. Rev. Lett. 40 (7), p. 461 (1978). https://doi.org/10.1103/PhysRevLett.40.461 | | 67. E.H. Nicollian, J.R. Brews, MOS Physics and Technology. Wiley, New York, 1982. | | 68. A.N. Nazarov, V.S. Lysenko, S.N. Mikhaylov, A.S. Tkachenko, M.I. Pavlyuk, A.N. Molostvov and V.I. Kilchitskaya, RF plasma treatment effect on the charge transportation and accumulation in oxide silicon of Al-polySi-SiO2 -Si structures // Mikroelektronika 22 (6), p. 15 (1993) (in Russian). | | 69. J. Nissan-Cohen, The effect of hydrogen on hot carrier and radiation immunity of MOS devices // Appl. Surf. Sci. 39 (1), p. 511 (1989). https://doi.org/10.1016/0169-4332(89)90468-6 | | 70. J. Bos, M. Hendriks, Plasma-induced fixed oxide charge // J. Appl. Phys. 66 (3), p. 1244 (1989). https://doi.org/10.1063/1.344449 | | 71. V.S. Lysenko, A.N. Nazarov, I.N. Osiyuk, V.I. Turchanikov, Transformation in Si-SiO2 -Al structures under RF plasma treatment // Appl. Surf. Sci. 39 (1), p. 388 (1989). https://doi.org/10.1016/0169-4332(89)90455-8 | | 72. A.N. Nazarov, J.N. Vovk, I.N. Osiyuk, A.S. Tkachenko, I.P. Tyagulskii, V.S. Lysenko, T. Gebel, L. Rebohle, W. Skorupa, R.A. Yankov, The effect of radio-frequency plasma treatment on the electroluminescent properties of violet lightemitting germanium implanted metal-oxide- semiconductor structures // Mater. Sci. and Eng. B 124-125, p. 458-461(2005). https://doi.org/10.1016/j.mseb.2005.08.045 | | 73. A.N. Nazarov, W. Skorupa, Ja.N. Vovk, I.N. Osiyuk, A.S. Tkachenko, I.P. Tyagulskii, V.S. Lysenko, T. Gebel, L. Rebohle, R.A. Yankov, T.M. Nazarova, Modification of the electroluminescence and charge trapping in germanium implanted metal oxide silicon light emitting diodes with plasma treatment // Semiconductor Physics, Quantum Electronics & Optoelectronics 8 (1), p. 90-94 (2005). | | 74. G.A. Scoggan, T.P. Ma, Effect of electron-beam radiation on MOS structures as influenced by silicon dopant // J. Appl. Phys. 48 (1), p. 294 (1977). https://doi.org/10.1063/1.323376 | | 75. E.H. Nicollian, J.R. Brews, MOS Physics and Technology. Wiley, New York, 1982. | | 76. R.A. Weeks, Paramagnetic spectra of E'2 centers in crystalline silica // Phys. Rev. 130(2), p 570 (1963). https://doi.org/10.1103/PhysRev.130.570 | | 77. P.J. Caplan, J.N. Helbert, B.E. Wagner, E.H. Poindexter, Paramagnetic defects in silicon/silicon dioxide systems // Surf. Sci. 54 (1), p. 33 (1976). https://doi.org/10.1016/0039-6028(76)90085-6 | | 78. P.M. Lenahan, W.L. Warren, P.V. Dressendorfer, R.E. Mikawa, Generation of paramagnetic point defect in silicon dioxide films on silicon through electron injection and exposure to ionizing radiation // Zeitschrift Phys. Chem. Nene Folge, Bd151, S. 235 (1987). https://doi.org/10.1524/zpch.1987.151.Part_1_2.235 | | 79. J.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI. Kluwer, Dordrecht, 1991. https://doi.org/10.1007/978-1-4757-2121-8 | | 80. A.N. Nazarov, Problems of radiation hardness of SOI structures and devices, In: Physical and Technical Problems of SOI structures and Devices, ed. by J.P. Colinge et al. Kluwer, Dordrecht, 1995, p. 217-239. https://doi.org/10.1007/978-94-011-0109-7_20 | | 81. A.N. Nazarov, V.I. Kilchytska, Y. Houk, D. Ballutaud, Mechanisms of positive charge generation in buried oxide of UNIBOND and separation by implanted oxygen silicon-on-insulator structures during high-field electron injection // J. Appl. Phys. 94 (3), p. 1823-1832 (2003). https://doi.org/10.1063/1.1589591 | | 82. L.C. Kimmerling, Recombination enhanced defect reactions // Solid State Electron. 21 (11/12), p. 1391 (1978). https://doi.org/10.1016/0038-1101(78)90215-0 | | 83. T. Takagahara, K. Takeda, Theory of the quantum comfinement effect on exciton in quantum dots of indirect-gap materials // Phys. Rev. B 46 (23), p. 15578-15581 (1992). https://doi.org/10.1103/PhysRevB.46.15578 | | 84. D. Kovalev, H. Heckler, G. Polisski, F. Koch, Optical properties of Si nanocrystals // Phys. status solidi (b) 215 (2), p. 871-931 (1999). https://doi.org/10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO;2-9 | | 85. V.A. Dan'ko, I.Z. Indutnyi, V.S. Lysenko, I.Yu. Maidanchuk, V.I. Min'ko, A.N. Nazarov, A.S. Tkachenko, P.E. Shepelyavyi, Kinetics of structural and phase transformations in thin SiOx films in the course of a rapid thermal annealing // Semiconductors 39 (10), p. 1197-1203 (2005). https://doi.org/10.1134/1.2085270 | | 86. T. Komoda, J.P. Kelly, R.M. Gwilliam, P.L.F. Hemment, B.J. Sealy, Effect of the gas ambient on the intensity of the visible photoluminescence from Si microcrystallites in a SiO2 matrix formed by ion implantation // Nucl. Instrum. Meth. Phys. Res. B 112, p. 219 (1996). https://doi.org/10.1016/B978-0-444-82410-3.50050-3 | | 87. I.P. Lisovskii, V.G. Litovchenko, V.B. Lozinskii, Effect of UV annealing of radiation damage in SiO2 films // Appl. Surf. Sci. 86, p. 299 (1995). https://doi.org/10.1016/0169-4332(94)00394-7 | | 88. V.P. Kunets, N.R. Kulish, V.V. Strelchuk, A.N. Nazarov, A.S. Tkachenko, V.S. Lysenko, M.P. Lisitsa, Enhancement of CdSSe QD exciton luminescence efficiency by hydrogen RF plasma treatment // Semiconductor Physics, Quantum Electronic & Optoelectronics 6 (2), p. 169-171 (2003). | | 89. L. Rebohle, J. von Borany, H. Fröb, W. Skorupa, Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements // Appl. Phys. B 70, p. 1-21 (2000). https://doi.org/10.1007/PL00006966 | | 90. A.N. Nazarov, I.N. Osiyuk, V.S. Lysenko, T. Gebel, L. Rebohle, W. Skorupa, Charge trapping and degradation in Ge+ ion implanted SiO2 layer during high-field electron injection // Microelectronics Reliability 42, p. 1461-1464 (2002). https://doi.org/10.1016/S0026-2714(02)00170-1 | | 91. A.N. Nazarov, T. Gebel, L. Rebohle, W. Skorupa, I.N. Osiyuk, V.S. Lysenko, Trapping of negative and positive charges in Ge ion implanted silicon dioxide layers subjected to high-field electron injection // J. Appl. Phys. 94 (7), p. 4440-4448 (2003). https://doi.org/10.1063/1.1604934 | | 92. W. Skorupa, A. Nazarov, R.A. Yankov, T. Gebel, L. Rebohle, Verfahren zur Behandlung Siliziumbasierter Lichtemitter // Deutsche Patentanmeldung DE 103 13 727.0 (2003). | | 93. A.N. Nazarov, I.N. Osiyuk, I.P. Tyagulskii, V.N. Torbin, T.M. Nazarova, T. Gebel, L. Rebohle, W. Skorupa, Hydrogen plasma treatment of lightemitting materials fabricated on basis of implanted SiO2 with nanocrystalline inclusions, In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, eds. D.V. Schur et al. IHSE, Kiev, 2007, p. 1050-1051. | | 94. Yu.Ya. Bekeris, R.B. Benders, R.P. Kalnynya, I.A. Feltyn, Structure changing, evoked by RF annealing of low-temperature SiO2 films // Izv. AN Latv. SSR. Ser. Fiz.-Tekhn. Nauki N 6, p. 97 (1984) (in Russian). | | 95. T.P. Ma, M.R. Chin, RF annealing of radiation - induced electron traps in MOS structures // Techn. Digest of IEDM, 1978, p. 224. | | 96. J.E. Shelby, Radiation effects in hydrogenimpregnated vitreous silica // J. Appl. Phys. 50 (5), p. 3702 (1979). https://doi.org/10.1063/1.326275 | | 97. J.D. Weeks, J.C. Tully, L.C. Kimmerling, Theory of recombination-enhanced defect reactions in semiconductors // Phys. Rev. B 12 (8), p. 3286 (1975). https://doi.org/10.1103/PhysRevB.12.3286 | | 98. T. Sugano, Carrier trapping in silicon MOS devices // Acta Polytech. Scand. Electr. Engineer. Ser. N 64, p. 220 (1989). | | 99. N.M. Johnson, D.K. Beigelsen, M.D. Moyer, Lowtemperature annealing and hydrogenation of defects at the Si-SiO2 interface // J. Vac. Sci. Technol. 19 (3), p. 390 (1981). https://doi.org/10.1007/978-3-642-68247-6_5 | | 100. E.E. Heller, Hydrogen in crystalline semiconductors, In: Handbook on Semiconductors, ed. by T.S. Moss, v.3, ed. by. S. Mahajain. Elselvier Science B.V., The Netherlands, 1994, p. 1515. | | 101. Amorphous Semiconductors, ed. by M.H. Brodsky, Topics in Appl. Phys. 36. Springer, Berlin, 1979, p. 419. | | 102. A.J.R. De Kock, The elimination of vacancy-claster formation in dislocation - free silicon crystals // J. Electrochem. Soc. 118 (11), p. 1851 (1971). https://doi.org/10.1149/1.2407850 | | 103. H.J. Stein, S.K Hahn, Hydrogen accelerated thermal donor formation in Czochralski silicon // Appl. Phys. Lett. 56 (1), p. 63 (1990). https://doi.org/10.1063/1.102652 | | 104. A.R. Brown, M. Claybourn, R. Murray, P.S. Nandhra, R.C. Newman, J.H. Tucker, Enhanced thermal donor formation in silicon exposed to a hydrogen plasma // Semicond. Sci. Technol. 3, p. 591 (1988). https://doi.org/10.1088/0268-1242/3/6/013 | | 105. Q. Guagang, H. Zonghu, The convergent effect of the annealing temperatures of electron irradiated defects in FZ silicon grown in hydrogen // Solid State Communs 53 (11), p. 975 (1985). https://doi.org/10.1016/0038-1098(85)90472-7 | | 106. R. Singh, S.J. Fonash, A. Rohatyi, P.R. Choudhary, J.A. Gigante, A low-temperature process for annealing extremely shallow As+implanted n+/p junction in silicon // J. Appl. Phys. 55 (4), p. 867 (1984). https://doi.org/10.1063/1.333183 | | 107. E.I. Terukov, B.J. Ber, V.Kh. Kudojarova, V.Ju. Davydov, A.N. Nazarov, Ja.N. Vovk, S. Ashok, Hydrogen-enhanced transformation of electrical and structural properties of thin subsurface ion implanted silicon layer in SiO2 -Si systems // Solid State Phenomena 69-70, p. 595- 601 (1999). https://doi.org/10.4028/www.scientific.net/SSP.69-70.595 | | 108. S.J. Pearton, Hydrogen passivation of γ-induced point defects in silicon // Phys. status solidi (a) 72 (1), K73 (1982). https://doi.org/10.1002/pssa.2210720160 | | 109. R. Singh, S.J. Fonash, A. Rohatyi, Interaction of low-energy implanted atomic hydrogen with slow and fast diffusing metallic impurities in Si // Appl. Phys. Lett. 49 (13), p. 800 (1986). https://doi.org/10.1063/1.97551 | | 110. J.I. Pankov, R.O. Wance and J.E. Berkeyheiser, Neutralization of acceptors in silicon by atomic hydrogen // Appl. Phys. Lett. 45 (10), p. 1100 (1984). https://doi.org/10.1063/1.95030 | | 111. N.M. Jonhson, C. Herring, D.J. Chadi, Interstitial hydrogen and neutralization of shallow-donor impurities in single-crystal silicon // Phys. Rev. Lett. 56 (7), p. 316 (1986). https://doi.org/10.1103/PhysRevLett.56.769 | | 112. C.G. Van de Walle, P.J.H. Denteneer, Y. Bar-Yam, S.T. Pantelides, Theory of hydrogen diffusion and reactions in crystalline silicon // Phys. Rev. B 39, (15), p. 10791 (1989). https://doi.org/10.1103/PhysRevB.39.10791 | | 113. H.J. Stein, Vacancies and the chemical trapping of hydrogen in silicon // Phys. Rev. Lett. 43 (14), p. 1030 (1979). https://doi.org/10.1103/PhysRevLett.43.1030 | | 114. C.K. Ony, G.S. Khoo, Model of two intense Si-H infrared stretching bands in FZ-Si grown in hydrogen // J. Phys. C 20 (3), p. 419 (1987). https://doi.org/10.1088/0022-3719/20/3/012 | | 115. B.N. Mukashev, S.G. Tokmoldin, M.F. Tamendarov, H.A. Abdulin, E.V. Chikhrai, Hydrogen passivation of dopants and radiation defects in ptype Si // Sov. Phys. Semiconductors 22 (6), p. 1020 (1988). | | 116. B. Tuttle, C.G. Van de Walle, J.B. Adams, Exchange of deeply traped and interstitial hydrogen in silicon // Phys. Rev. B 59, (8), p. 5493 (1999). https://doi.org/10.1103/PhysRevB.59.5493 | | 117. T.S. Shi, S.N. Sahu, G.S. Oehrlein, A. Hiraki, J.W. Corbett, Models of the hydrogen-related defect-impurity complexes and Si-H infrared bands in crystalline silicon // Phys. status solidi (a) 74, (2), p. 329 (1982). https://doi.org/10.1002/pssa.2210740140 | | 118. G.L. Gutsev, G.S. Myakenkaya, V.V. Frolov, V.B. Glazman, Nature of hydrogen bonding in SiA-center // Phys. status solidi (a) 153 (2), p. 659 (1989). https://doi.org/10.1002/pssb.2221530224 | | 119. B.N. Mukashev, S.Z. Tokmoldin, M.F. Tamendarov, V.V. Frolov, Hydrogen passivation of vacancy related centers in silicon // Physica B 170, p. 545 (1991). https://doi.org/10.1016/B978-0-444-89138-9.50076-0 | | 120. S.B. Zhang, D.J. Chadi, Microscopic structure of hydrogen-shallow-donor complexes in crystalline silicon // Phys. Rev. B 41 (6), p. 3882 (1990). https://doi.org/10.1103/PhysRevB.41.3882 | | 121. P.J.H. Denteneer, C.G. Van de Walle, S.T. Pantelides, Microscopic structure of the hydrogenphosphorus complexes in crystalline silicon // Phys. Rev. B 41, (6), p. 3885 (1990). https://doi.org/10.1103/PhysRevB.41.3885 | | 122. P. Deak, L.C. Snyder, M. Heinrich, C.T. Ortiz, J.W. Corbett, Hydrogen complexes and theit vibretions in undoped crystalline silicon // Physica B 170, p. 253 (1991). https://doi.org/10.1016/B978-0-444-89138-9.50035-8 | | 123. G.G. DeLeo, Theory of hydrogen-impurity complexes in semiconductors // Physica B 170, p. 295 (1991). https://doi.org/10.1016/B978-0-444-89138-9.50043-7 | | 124. V.S. Lysenko, A.N. Nazarov, I.M. Zaritsii, G. Sherfósó, G. Battistig, J. Gyulai, L. Dozsa, RF plasma modification of heaving destroyed ion implanted surface silicon layer // Phys. status solidi (a) 115 (1), p. 75 (1989). https://doi.org/10.1002/pssa.2211150105 | | 125. A.N. Nazarov, V.S. Lysenko, S.A. Valiev, M.M. Lokshin, A.S. Tkachenko, I.E. Kunitskii, Flash-lamp annealing and RF plasma annealing of Al-SiO2-Si structures // Phys. status solidi (a) 120 (2), p. 447 (1990). https://doi.org/10.1002/pssa.2211200217 | | 126. V.L. Vinetskii, G.A. Holodar, Radiation Semiconductor Physics. Naukova Dumka, Kiev, 1979, p. 336 (in Russian). | | 127. A.F. Saunders and G.T. Wright, Interface states in the silicon/silicon oxide system observed by thermally stimulated charge release // Electron. Lett. 6 (7), p. 207 (1970). https://doi.org/10.1049/el:19700148 | | 128. J. Bourgoin, M. Lannoo, Point Defects in Semiconductors II. Experimental Aspects. Springer, Berlin, 1983. https://doi.org/10.1007/978-3-642-81832-5 | | 129. H. Ryssel, I. Ruge, Ion Implantation. Wiley, New York, 1986. | | 130. M.L.W. Thewalt, In: Excitons. Nauka, Moscow, 1985, p. 284 (in Russian). | | 131. M.Ya. Valakh, V.S. Lysenko, A.N. Nazarov, G.Yu. Rudko, N.I. Shakhraychuk, Activation of the implanted impurity and transformation of radiation defects in oxidized silicon under RF plasma treatment // Phys. status solidi (a) 130 (1), p. 45 (1992). https://doi.org/10.1002/pssa.2211300106 | | 132. A.N. Nazarov, V.M. Pinchuk, V.S. Lysenko, T.V. Yanchuk, Quantum chemical investigations of atomic hydrogen effect on Frenkel pairs annihilation in silicon // Modelling Simul. Mater. Sci. Eng. 4, p. 323 (1996). https://doi.org/10.1088/0965-0393/4/3/006 | | 133. A.N. Nazarov, V.M. Pinchuk, V.S. Lysenko, T.V. Yanchuk, S. Ashok, Enhanced activation of implanted dopant impurity in hydrogenated cristalline silicon // Phys. Rev. B 58 (7), p. 3522 (1998). https://doi.org/10.1103/PhysRevB.58.3522 | | 134. A.N. Nazarov, V.M. Pinchuk, T.V. Yanchuk, V.S. Lysenko, Hydrogen enhanced defect reactions in silicon: interstitial atom - vacancy // Mat. Res. Soc. Symp. Proc. 510, p. 367 (1998). https://doi.org/10.1557/PROC-510-367 | | 135. A.N. Nazarov, V.M. Pinchuk, T.V. Yanchk, V.S. Lysenko, Ya.N. Vovk, S. Rangan, S. Ashok, V. Kudoyarova, E.I. Terukov, Hydrogen effect on enhancement of defect reactions in semiconductors: example for silicon and vacancy defects // Intern. J. Hydrogen Energy 26, p. 521-526 (2001). https://doi.org/10.1016/S0360-3199(00)00090-2 | | 136. S. Kar, P .Zaumseil, S. Ashok, An experimental study of ion beam and ECR hydrogenation of selfion implantation damage in silicon by admittance spectroscopy and x-ray triple crystal diffractometry // Solid State Phenomena 57-58, p. 483 (1997). https://doi.org/10.4028/www.scientific.net/SSP.57-58.483 | | 137. A.M. Grehov, V.M. Gun'ko, G.M. Klapchenko, Yu.P. Tsjaschenko, Local structural relaxation of hydrogenated vacancy in silicon // Sov. Phys. Solid State 27 (1), p. 285 (1985). | | 138. B. Hourahine, R. Jones, S. Oberg, R.C. Newman, P.R. Briddon, E. Roduner, Hydrogen molecules in silicon located at interstitial sites and trapped in voids // Phys. Rev. B 57 (20), p. R12666 (1998). https://doi.org/10.1103/PhysRevB.57.R12666 | | 139. D.J. Chadi, C.H. Park, Electronic properties of hydrogen-derived complexes in silicon // Phys. Rev. B 52 (12), p. 8877 (1995). https://doi.org/10.1103/PhysRevB.52.8877 | | 140. D. Beeman, R. Tsu, M.F. Thorpe, Structural information from the Raman spectrum of amorphous silicon // Phys. Rev. B 32 (2), p. 874 (1985). https://doi.org/10.1103/PhysRevB.32.874 | | 141. S.V. Koveshnikov, S.V. Nosenko, A.M. Surma, Modification of the properties of Si crystals exposed to atomic hydrogen at high temperatures // Solid State Phenomena 19, p. 165 (1991). https://doi.org/10.4028/www.scientific.net/SSP.19-20.265 | | 142. V.V. Aristov, S.V. Koveshnikov, S.V. Nosenko, E.B. Yakimov, A.M. Surma, Some aspects of third generation creation of the power silicon switching devices, ruled by nonplanar MOS structure // Mikroelektronika 24 (3), p. 198 (1995) (in Russian). | | 143. V.S. Lysenko, P.S. Kopev, A.N. Nazarov, G.A. Naumovets, V.B. Popov, A.S. Tkachenko, A.M. Vasiliev and V.M. Ustinov, Thermal reactivation of nonradiative recombination centers in hydrogenated AlxGa1-xAs:Si // Phys. status solidi (a) 139 (2), p. 541 (1993). https://doi.org/10.1002/pssa.2211390227 | |
|
|