Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (2) P. 116-124 (2009).
DOI:
https://doi.org/10.15407/spqeo12.02.116
References
1. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, M. Molotski, Submicron ferroelectric domain structures tailored by highvoltage scanning probe microscopy // Appl. Phys. Lett. 82 (2), p. 103-105 (2003). https://doi.org/10.1063/1.1534410 | | 2. A.L. Kholkin, I.K. Bdikin, V.V. Shvartsman, A. Orlova, D.A. Kiselev, and A.A. Bogomolov, Local electromechanical properties of ferroelectric materials for piezoelectric applications, In: Scanning-Probe and Other Novel Microscopies of Local Phenomena in Nanostructured Materials, edited by S.V. Kalinin, B. Goldberg, L.M. Eng, and B.D. Huey // Mater. Res. Soc. Symp. Proc. 838E. Warrendale, PA, 2005, O7.6. https://doi.org/10.1557/PROC-838-O7.6 | | 3. P. Paruch, T. Giamarchi, T. Tybell, and J.- M. Triscone, Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films. // J. Appl. Phys. 100 (5), 051608 (2006). https://doi.org/10.1063/1.2337356 | | 4. T.J. Yang, V. Gopalan, P.J. Swart, and U. Mohideen, Direct observation of pinning and bowing of a single ferroelectric domain wall // Phys. Rev. Lett. 82 (20), p. 4106-4109 (1999). https://doi.org/10.1103/PhysRevLett.82.4106 | | 5. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, Y. Rosenwaks, Ferroelectric domain breakdown // Phys. Rev. Lett. 90 (10), 107601 (2003). https://doi.org/10.1103/PhysRevLett.90.107601 | | 6. S.V. Kalinin, A. Gruverman, B.J. Rodriguez, J. Shin, A.P. Baddorf, E. Karapetian, M. Kachanov, Nanoelectromechanics of polarization switching in piezoresponse force microscopy // J. Appl. Phys. 97 (7), 074305 (2005). https://doi.org/10.1063/1.1866483 | | 7. M. Molotskii, M. Shvebelman, Dynamics of ferroelectric domain formation in an atomic force microscope // Phyl. Mag. 85, p. 1637-1655 (2005). https://doi.org/10.1080/14786430312331524670 | | 8. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, S. Jesse, B.J. Rodriguez, S.V. Kalinin, Piezoresponse Force Spectroscopy of ferroelectric-semiconductor materials // J. Appl. Phys. 102 (11), 114108 (2007). https://doi.org/10.1063/1.2818370 | | 9. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, B.J. Rodriguez, S. Jesse, S.V. Kalinin, Local polarization switching in the presence of surface charged defects: microscopic mechanisms and Piezoresponse Force Spectroscopy observations // Phys. Rev. B 78 (5), 054101 (2008). https://doi.org/10.1103/PhysRevB.78.054101 | | 10. A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, V. Gopalan, and S.V. Kalinin, Effect of the intrinsic width on the Piezoelectric Force Microscopy of a single ferroelectric domain wall // J. Appl. Phys. 103 (12), 124110 (2008). https://doi.org/10.1063/1.2939369 | | 11. A.N. Morozovska, S.V. Kalinin, E.A. Eliseev, V. Gopalan, and S.V. Svechnikov, The interaction of an 180-degree ferroelectric domain wall with a biased Scanning Probe Microscopy tip: effective wall geometry and thermodynamics in GinzburgLandau-Devonshire theory // Phys. Rev. B 78 (12), 125407 (2008). https://doi.org/10.1103/PhysRevB.78.125407 | | 12. F. Felten, G.A. Schneider, J.M. Saldaña, and S.V. Kalinin, Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy // J. Appl. Phys. 96 (1), p. 563-568 (2004). https://doi.org/10.1063/1.1758316 | | 13. D.A. Scrymgeour and V. Gopalan, Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall // Phys. Rev. B 72 (2), 024103 (2005). https://doi.org/10.1103/PhysRevB.72.024103 | | 14. A.I. Lur'e, Three-dimensional Problems of the Theory of Elasticity. Interscience Publishers, 1964. | | 15. L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Theoretical Physics, Vol. 7. Butterworth-Heinemann, Oxford, U.K., 1998. | | 16. A.K. Tagantsev, and G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films // J. Appl. Phys. 100 (5), 051607 (2006). https://doi.org/10.1063/1.2337009 | | 17. C.H. Woo and Yue Zheng, Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional // Appl. Phys. A 91, p. 59-63 (2007). https://doi.org/10.1007/s00339-007-4355-4 | | 18. V.A. Zhirnov, A contribution to the theory of domain walls in ferroelectrics // Zh. Eksp. Theor. Fiz. 35 (5), p. 1175-1180 (1959) (in Russian) [Sov. Phys. JETP 8, p. 822 (1959)]. | | 19. W. Cao, and L.E. Cross, Theory of tetragonal twin structures in ferroelectric perovskites with a firstorder phase transition // Phys. Rev. B 44 (1), p. 5-12 (1991). https://doi.org/10.1103/PhysRevB.44.5 | | 20. R. Kretschmer, and K. Binder, Surface effects on phase transition in ferroelectrics and dipolar magnets // Phys. Rev. B 20 (3), p. 1065-1076 (1979). https://doi.org/10.1103/PhysRevB.20.1065 | | 21. M.E. Lines and A.M. Glass, Principles and Application of Ferroelectrics and Related Materials. Clarendon Press, Oxford, 1977. | | 22. S. Choudhury, Y. Li, N. Odagawa, Aravind Vasudevarao, L. Tian, P. Capek, V. Dierolf, А.N. Morozovska, E.A. Eliseev, S.V. Kalinin, Y. Cho, L-Q. Chen, V. Gopalan, The influence of 180° ferroelectric domain wall width on the threshold field for wall motion // J. Appl. Phys. 104 (8), 084107 (2008). https://doi.org/10.1063/1.3000459 | | 23. A.N. Morozovska, E.A. Eliseev, S.L. Bravina and S.V. Kalinin, Resolution function theory in Piezoresponse Force Microscopy: domain wall profile, spatial resolution, and tip calibration // Phys. Rev. B 75 (17), 174109-1-18 (2007). https://doi.org/10.1103/PhysRevB.75.174109 | |
|
|