Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (2) P. 116-124 (2009).
DOI: https://doi.org/10.15407/spqeo12.02.116


References

1. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, M. Molotski, Submicron ferroelectric domain structures tailored by highvoltage scanning probe microscopy // Appl. Phys. Lett. 82 (2), p. 103-105 (2003).
https://doi.org/10.1063/1.1534410
2. A.L. Kholkin, I.K. Bdikin, V.V. Shvartsman, A. Orlova, D.A. Kiselev, and A.A. Bogomolov, Local electromechanical properties of ferroelectric materials for piezoelectric applications, In: Scanning-Probe and Other Novel Microscopies of Local Phenomena in Nanostructured Materials, edited by S.V. Kalinin, B. Goldberg, L.M. Eng, and B.D. Huey // Mater. Res. Soc. Symp. Proc. 838E. Warrendale, PA, 2005, O7.6.
https://doi.org/10.1557/PROC-838-O7.6
3. P. Paruch, T. Giamarchi, T. Tybell, and J.- M. Triscone, Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films. // J. Appl. Phys. 100 (5), 051608 (2006).
https://doi.org/10.1063/1.2337356
4. T.J. Yang, V. Gopalan, P.J. Swart, and U. Mohideen, Direct observation of pinning and bowing of a single ferroelectric domain wall // Phys. Rev. Lett. 82 (20), p. 4106-4109 (1999).
https://doi.org/10.1103/PhysRevLett.82.4106
5. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, Y. Rosenwaks, Ferroelectric domain breakdown // Phys. Rev. Lett. 90 (10), 107601 (2003).
https://doi.org/10.1103/PhysRevLett.90.107601
6. S.V. Kalinin, A. Gruverman, B.J. Rodriguez, J. Shin, A.P. Baddorf, E. Karapetian, M. Kachanov, Nanoelectromechanics of polarization switching in piezoresponse force microscopy // J. Appl. Phys. 97 (7), 074305 (2005).
https://doi.org/10.1063/1.1866483
7. M. Molotskii, M. Shvebelman, Dynamics of ferroelectric domain formation in an atomic force microscope // Phyl. Mag. 85, p. 1637-1655 (2005).
https://doi.org/10.1080/14786430312331524670
8. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, S. Jesse, B.J. Rodriguez, S.V. Kalinin, Piezoresponse Force Spectroscopy of ferroelectric-semiconductor materials // J. Appl. Phys. 102 (11), 114108 (2007).
https://doi.org/10.1063/1.2818370
9. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, B.J. Rodriguez, S. Jesse, S.V. Kalinin, Local polarization switching in the presence of surface charged defects: microscopic mechanisms and Piezoresponse Force Spectroscopy observations // Phys. Rev. B 78 (5), 054101 (2008).
https://doi.org/10.1103/PhysRevB.78.054101
10. A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, V. Gopalan, and S.V. Kalinin, Effect of the intrinsic width on the Piezoelectric Force Microscopy of a single ferroelectric domain wall // J. Appl. Phys. 103 (12), 124110 (2008).
https://doi.org/10.1063/1.2939369
11. A.N. Morozovska, S.V. Kalinin, E.A. Eliseev, V. Gopalan, and S.V. Svechnikov, The interaction of an 180-degree ferroelectric domain wall with a biased Scanning Probe Microscopy tip: effective wall geometry and thermodynamics in GinzburgLandau-Devonshire theory // Phys. Rev. B 78 (12), 125407 (2008).
https://doi.org/10.1103/PhysRevB.78.125407
12. F. Felten, G.A. Schneider, J.M. Saldaña, and S.V. Kalinin, Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy // J. Appl. Phys. 96 (1), p. 563-568 (2004).
https://doi.org/10.1063/1.1758316
13. D.A. Scrymgeour and V. Gopalan, Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall // Phys. Rev. B 72 (2), 024103 (2005).
https://doi.org/10.1103/PhysRevB.72.024103
14. A.I. Lur'e, Three-dimensional Problems of the Theory of Elasticity. Interscience Publishers, 1964.
15. L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Theoretical Physics, Vol. 7. Butterworth-Heinemann, Oxford, U.K., 1998.
16. A.K. Tagantsev, and G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films // J. Appl. Phys. 100 (5), 051607 (2006).
https://doi.org/10.1063/1.2337009
17. C.H. Woo and Yue Zheng, Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional // Appl. Phys. A 91, p. 59-63 (2007).
https://doi.org/10.1007/s00339-007-4355-4
18. V.A. Zhirnov, A contribution to the theory of domain walls in ferroelectrics // Zh. Eksp. Theor. Fiz. 35 (5), p. 1175-1180 (1959) (in Russian) [Sov. Phys. JETP 8, p. 822 (1959)].
19. W. Cao, and L.E. Cross, Theory of tetragonal twin structures in ferroelectric perovskites with a firstorder phase transition // Phys. Rev. B 44 (1), p. 5-12 (1991).
https://doi.org/10.1103/PhysRevB.44.5
20. R. Kretschmer, and K. Binder, Surface effects on phase transition in ferroelectrics and dipolar magnets // Phys. Rev. B 20 (3), p. 1065-1076 (1979).
https://doi.org/10.1103/PhysRevB.20.1065
21. M.E. Lines and A.M. Glass, Principles and Application of Ferroelectrics and Related Materials. Clarendon Press, Oxford, 1977.
22. S. Choudhury, Y. Li, N. Odagawa, Aravind Vasudevarao, L. Tian, P. Capek, V. Dierolf, А.N. Morozovska, E.A. Eliseev, S.V. Kalinin, Y. Cho, L-Q. Chen, V. Gopalan, The influence of 180° ferroelectric domain wall width on the threshold field for wall motion // J. Appl. Phys. 104 (8), 084107 (2008).
https://doi.org/10.1063/1.3000459
23. A.N. Morozovska, E.A. Eliseev, S.L. Bravina and S.V. Kalinin, Resolution function theory in Piezoresponse Force Microscopy: domain wall profile, spatial resolution, and tip calibration // Phys. Rev. B 75 (17), 174109-1-18 (2007).
https://doi.org/10.1103/PhysRevB.75.174109