Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 2. P. 145-151.
https://doi.org/10.15407/spqeo14.02.145



References 

1. S. Borkar, Designing reliable systems from unreliable components: the challenges of transistor variability and degradation . IEEE Microelectronics, 26, No.6, p. 10-16 (2005).
https://doi.org/10.1109/mm.2005.110
 
2. A. Srivastava, R. Bai, D. Blaauw, D. Sylvester, Modelling and analysis of leakage power considering within-die process variation . Proc. Intern. Symp. "Low Power Electronics and Design" (ISLPED'02), IEEE Press, p. 64-67 (2002).
 
3. S. Narendra, V. De, S. Borkar, D. Antoniadis, and A. Chandrakasan, Full-chip sub-threshold leakage power prediction model for sub-0.18 µm CMOS. Proc. Intern. Symp. "Low Power Electronics and Design" (ISLPED '02), p. 19-23 (2002).
 
4. K. Roy, S. Mukhopadhyay, and H. Mahmoodi- Meimand, Leakage current mechanisms and leakage reduction techniques in deep submicrometer CMOS circuits . Proc. IEEE, 91, No.2, p. 305-327 (2003).
https://doi.org/10.1109/JPROC.2002.808156
 
5. S. Mukhopadhyay, S. Bhunia, and K. Roy, Modelling and analysis of loading effect in leakage of nano-scaled bulk-CMOS logic circuit . Proc. Design and Test Europe conf. (DATE'05), 1, p. 224-229 (2005).
 
6. S. Mukhopadhyay, A. Raychowdhary, K. Roy, Accurate estimation of total leakage current in scaled CMOS logic circuits based on compact current modelling . Proc. 40-th Annual Design Automation Conf. (DAC'2003).
 
7. W.C. Tang, T.C.H. Nguyen, M.W. Judy, and R.T. Howe, Electrostatic comb drive of lateral polysilicon resonators. Sensors and Actuators A, 21, p. 328-331 (1990).
https://doi.org/10.1016/0924-4247(90)85065-C
 
8. Ibrahim Ahmad, Yap Kim Ho, Burhanuddin Yeop Majlis, Fabrication and characterization of 0.14-µm CMOS device using ATHENA & ATLAS simulators . Semiconductor Physics, Quantum Electronics & Optoelectronics, 9 (2), p. 40-44 (2006).
 
9. F. Salehuddin, I. Ahmad, F.A. Hamid, A. Zaharim, Characterization and optimizations of silicide thickness in 45nm PMOS device. Intern. Conf. on Electronic Devices, Systems and Applications (ICEDSA), April 11-14, 2010, p. 300-304.
https://doi.org/10.1109/icedsa.2010.5503054
 
10. T. Speranza, Yutong Wu, E. Fisch, J. Slinkman, J. Wong, K. Bever, Manufacturing optimization of shallow trench isolation for advanced CMOS logic technology . Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Munich, Germany, April 23-24, 2001, p. 59-63.
https://doi.org/10.1109/asmc.2001.925616
 
11. R.B. Beck, M. Giedz, A. Wojtkiewicz, A. Kud, A. Jakubowski, PECVD formation of ultrathin silicon nitride layers for CMOS technology . Vacuum, 70, issues 2-3, p. 323-329 (2003).
https://doi.org/10.1016/S0042-207X(02)00665-6
 
12. Weng Chun-Jen, Feasible approach for processes integration of CMOS transistor gate/side-wall spacer patterning fabrication . Microelectronics and Reliability Journal, 50, No.12, p. 1951-1960 (2010).
https://doi.org/10.1016/j.microrel.2010.07.010
 
13. P. Ferreira, V. Senez, B. Baccus, J. Varon, J. Lebailly, Finite element optimization of a MOSFET structure: the roll of interlayer material for residual stress reduction . Intern. Electron Devices Meeting (IEDM 1995), IEDM Tech. Dig., p. 503.
 
15. C. Curello, R. Rengarajan, J. Faul, A. Kieslich, H. Glawischnig, Junction capacitance reduction by S/D junction compensation implant . Proc. Conf. on Ion Implantation Technology, September 17-22, 2000, Alpbach, Austria, p. 46-49.
https://doi.org/10.1109/iit.2000.924086
 
16. International Technology Roadmap for Semiconductors, http://www.itrs.net/common/2004 Update/ 2004_03_PIDS.pdf, 2008.