1. J. Coutinho, R. Jones, P.R. Briddon, S.Oberg,
L.I. Murin, Y.p. Markevich, J.L. Lindstrom, Interstitial carbon-oxygen
center and hydrogen related shallow thermal donors in Si 11 Phys. Rev.
B 65,014109-11 (2001). https://doi.org/10.1103/PhysRevB.65.014109
2.
M. Suezawa, Y. Takada, T. Tamano, R. Taniguchi, F. Hori, and R.Oshima,
Migration energies of point defects during electron irradiation of
hydrogenated Si crystals. Phys. Rev. B 66, 155201-6 (2002). https://doi.org/10.1103/PhysRevB.66.155201
3.
G.D. Watkins, J.R. Troxeli, A.P. Chatterjee, Vacancies and
interstitials in silicon 11 proc. Intern. conf. "Defects and Radiation
Effects in Semiconductors ". Ser. N46 (NicE, 1978). Inst. of Phys.
Bristol and London, p. 16-30, 1979.
4. M.D. VArEntsov,
G.P. Gaidar, A.p. DolgoIenko, P.G. Litovchenko, The radiation hardness
of silicon doped bY germanium with high concentration of free oxygen.
Nuclear Physics and Atomic Energy 1 (17), p. 60-66 (2006).
5. V.L. Vinetsii, G.A. Kholodar, Radiation Physics of Semiconductors. Naukova dumka, KiEv, p. 200, 1979 (in Russian).
6.
H. Bracht, J.F. Pedersen, N. Zangenberg, A.N. Larsen, E.E. HAllEr, G.
LuIli, and M. Posselt. Radiation enhanced silicon self-diffusion and
the silicon vacancy at high temperatures. Phys. Rev. Lett. 91 (24),
245502-4 (2003). https://doi.org/10.1103/PhysRevLett.91.245502
7.
H. Bracht, N.A. Stolwijk, and H. Mehrer, Properties of intrinsic point
defects in silicon determined bY zinc diffusion experiments under
non-equilibrium conditions. Phys. Rev. B 52 (23), p. 16542-16560 (1995). https://doi.org/10.1103/PhysRevB.52.16542
8.
A. Seeger and K.p. Chik, Diffusion mechanisms and point defects in
silicon and germanium. Phys. status solidi (b) 29 (2), p. 455-542
(1968). https://doi.org/10.1002/pssb.19680290202
9.
p. Partyka, Y. Zhong, K. Nordlund, R.S. Averback, i.M. Robinson, p.
Ehrhart, Grazing incidence diffuse X-ray scattering investigation of
the properties of irradiation-induced point defects in silicon. Phys.
Rev. B. 64,235207-8 (2001). https://doi.org/10.1103/PhysRevB.64.235207
10.
A. Seeger, H. Foll, W. Frank, Self-intErstitiAls, vacancies and their
clusters in silicon and germanium. proc. Intern. conf "Radiation
Effects in Semiconductors. Ser. N 31 (Dubrovnic. 1976). Inst. of Phys.
London and Bristol, p. 12-29, 1977.
11. Y. Tokuyama, M.
Suezawa, and N. Fukata, T. Taishi and K. Hoshikawa, Occupation site
change of self-interstitials and group-III acceptors in Si crystals:
Dopant dependence of the Watkins replacement efficiency. Phys. Rev. B
69, 125217- 7 (2004). https://doi.org/10.1103/PhysRevB.69.125217
12.
R. cAr, P.J. KEllY, A Oshiyama, and s.T. Pantelides, Microscopic theory
of atomic diffusion mechanisms in silicon. Phys. Rev. Lett. 52 (20), p.
1814-1817 (1984). https://doi.org/10.1103/PhysRevLett.52.1814
13.
p. Pecheur, E. Kauffer, M. Gerl, Tight-binding study of the lattice
vAcAncY in semiconductors. Proc. intern. Conf. "Defects and Radiation
Effects in Semiconductors ". Ser. N 46 (Nice, 1978). Inst. of Phys.
Bristol and London, Chapter 2, p. 174- 179, 1979.
14. Ap.
Dolgolenko, p.o. Litovchenko, M.D. Varentsov, o.p. Gaidar, Ap.
Litovchenko, Particularities of the formation of radiation defects in
silicon with low and high concentrations of oxygen. Phys. status solidi
(b) 243 (8), p. 1842-1852 (2006). https://doi.org/10.1002/pssb.200541074
15.
p. Pellegrino, p. Leveque, J. Lalita, A HAllEn, c. Jagadish, B.o.
Svensson, Annealing kinetics of vacancy-related defects in low-dose MEV
self-ion-implanted n-TYpE siIicon. Phys. Rev. B 64, 195211-10 (2001). https://doi.org/10.1103/PhysRevB.64.195211
16. R.E. Whan, Oxygen-defect complexes in neutron-irradiated silicon. J. Appl. Phys. 37 (9), p.3378- 3382 (1966). https://doi.org/10.1063/1.1708867
17.
J.W. Corbett, O.D. Watkins, R.M. Chrenko, R.S. McDonald, Defects in
irradiated silicon.II. Infrared absorption of the Si - A center. Phys.
Rev. 121 (4), p. 1015-1022 (1961). https://doi.org/10.1103/PhysRev.121.1015
18.
B.o. Svensson, J.L. Lindstrom, Kinetic study of the 830 and 889 cm-1
infrared bands during annealing of irradiated silicon. Phys. Rev. B 34
(12), p. 8709-8717 (1986). https://doi.org/10.1103/PhysRevB.34.8709
19.
Kh. A. Abdullin, B.N. Mukashev, M.F. Tamendarov, and T.B. Tashenov, New
defect states in irradiated p-TYpE silicon. Phys. Lett. A 144 (3), p.
198-200 (1990). https://doi.org/10.1016/0375-9601(90)90700-X
20.
A. Mattoni, F. Bernardini, and L. Colomboo, Self-interstitial trapping
by carbon complexes in crystalline si1icon. Phys. Rev. B 66 (19),
195214-6 (2002). https://doi.org/10.1103/PhysRevB.66.195214
21.
Ap. Dolgolenko, O.P.Gaidar, M.D. Varentsov, p.o. Litovchenko, The
influEncE of germanium dopant on radiation hardness of silicon with
high oxygen concentration. Problems 0f Atomic Science and Technology.
Series "Physics of Radiation Effects and Radiation Materials Science"
92, N 2, p. 28-36 (2008).
22. c.p. Ewels and R. Jones,
S.Oberg, J. Miro and p. Deak, Shallow thermal donor defects in silicon.
Phys. Rev. Lett. 77 (5), p. 865-868 (1996). https://doi.org/10.1103/PhysRevLett.77.865
23.
O.P. Gaidar, A.p. Dolgolenko, p.o. Litovchenko, Thermal annealing of
radiation-induced defects in n-Si irradiated with fast reactor
neutrons. Ukr. J. Phys. 53 (7), p. 688-693 (2008).
24.
L.I. Khirunenko, M.o. Sosnin, Yu.V. Pomozov, L.I. Murin, V.p.
Markevich, A.R. Peaker, L.M. Almeida, J. Coutinho, and V.J.B. Torres,
Formation of interstitial carbon-interstitial oxygen complexes in
silicon: Local vibrational mode spectroscopy and density functional
theory. Phys. Rev. B 78 (15), 155203-8 (2008). https://doi.org/10.1103/PhysRevB.78.155203
25.
R. Jones and S. Oberg, Oxygen frustration and the interstitial
carbon-oxygen complex in Si. Phys. Rev. Lett. 68 (1), p. 86-89 (1992). https://doi.org/10.1103/PhysRevLett.68.86
26. M.W. Thompson, Defects and Radiation Damage in Metals. Mir, Moscow, p. 25, 1971 (in Russian).
27.
A. M. Frens, M. T. Bennebroek, A. Zakrzewski, J. Schmidt, W.M. chEn, E.
Janzen, J.L. Lindstrom, B. Monemar, Observation of rapid direct charge
transfer between deep defects in silicon. Phys. Rev. Lett. 72 (18), p.
2939-2942 (1994). https://doi.org/10.1103/PhysRevLett.72.2939
28.
Y.H. Lee, N.N. Gerasimenko, J.W. Corbett, EPR study of
neutron-irradiated silicon: A positive charge state of the <100>
split di-interstitial. Phys. Rev. B 14 (10), p. 4506-4520 (1976). https://doi.org/10.1103/PhysRevB.14.4506
29.
L.I. Murin, Y.p. Markevich, J.L. Lindstrom, M. Kleverman, J.
Hermansson, T. Hallberg, B.o. Svensson, Carbon-oxygen-related complexes
in irradiated and heat-treated silicon: IR absorption studies. Solid
State Phenomena 82-84, p. 57-62 (2002). https://doi.org/10.4028/www.scientific.net/SSP.82-84.57
30.
p.M. MoonEY, L.J. Cheng, M. Suli, J.D. Gerson, and J.W. Corbett, Defect
energy levels in boron-doped silicon irradiated with 1-MeV electrons.
Phys. Rev. B 15 (8), p. 3836-3843 (1977). https://doi.org/10.1103/PhysRevB.15.3836
31.
C.p. Ewels, R. Jones, S. Oberg, J. Miro, p. Deak, Shallow thermal donor
defects in silicon. Phys. Rev. Lett. 77 (5), p. 865-868 (1996). https://doi.org/10.1103/PhysRevLett.77.865
32.
A. Mattoni, F. Bernardini, and L. colombo, Self-interstitial trapping
bY carbon complexes in crystalline silicon. Phys. Rev. B 66, 195214-6
(2002). https://doi.org/10.1103/PhysRevB.66.195214