Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 2. P. 213-221.
https://doi.org/10.15407/spqeo14.02.213



References 

1. J. Coutinho, R. Jones, P.R. Briddon, S.Oberg, L.I. Murin, Y.p. Markevich, J.L. Lindstrom, Interstitial carbon-oxygen center and hydrogen related shallow thermal donors in Si 11 Phys. Rev. B 65,014109-11 (2001).
https://doi.org/10.1103/PhysRevB.65.014109
 
2. M. Suezawa, Y. Takada, T. Tamano, R. Taniguchi, F. Hori, and R.Oshima, Migration energies of point defects during electron irradiation of hydrogenated Si crystals. Phys. Rev. B 66, 155201-6 (2002).
https://doi.org/10.1103/PhysRevB.66.155201
 
3. G.D. Watkins, J.R. Troxeli, A.P. Chatterjee, Vacancies and interstitials in silicon 11 proc. Intern. conf. "Defects and Radiation Effects in Semiconductors ". Ser. N46 (NicE, 1978). Inst. of Phys. Bristol and London, p. 16-30, 1979.
 
4. M.D. VArEntsov, G.P. Gaidar, A.p. DolgoIenko, P.G. Litovchenko, The radiation hardness of silicon doped bY germanium with high concentration of free oxygen. Nuclear Physics and Atomic Energy 1 (17), p. 60-66 (2006).
 
5. V.L. Vinetsii, G.A. Kholodar, Radiation Physics of Semiconductors. Naukova dumka, KiEv, p. 200, 1979 (in Russian).
 
6. H. Bracht, J.F. Pedersen, N. Zangenberg, A.N. Larsen, E.E. HAllEr, G. LuIli, and M. Posselt. Radiation enhanced silicon self-diffusion and the silicon vacancy at high temperatures. Phys. Rev. Lett. 91 (24), 245502-4 (2003).
https://doi.org/10.1103/PhysRevLett.91.245502
 
7. H. Bracht, N.A. Stolwijk, and H. Mehrer, Properties of intrinsic point defects in silicon determined bY zinc diffusion experiments under non-equilibrium conditions. Phys. Rev. B 52 (23), p. 16542-16560 (1995).
https://doi.org/10.1103/PhysRevB.52.16542
 
8. A. Seeger and K.p. Chik, Diffusion mechanisms and point defects in silicon and germanium. Phys. status solidi (b) 29 (2), p. 455-542 (1968).
https://doi.org/10.1002/pssb.19680290202
 
9. p. Partyka, Y. Zhong, K. Nordlund, R.S. Averback, i.M. Robinson, p. Ehrhart, Grazing incidence diffuse X-ray scattering investigation of the properties of irradiation-induced point defects in silicon. Phys. Rev. B. 64,235207-8 (2001).
https://doi.org/10.1103/PhysRevB.64.235207
 
10. A. Seeger, H. Foll, W. Frank, Self-intErstitiAls, vacancies and their clusters in silicon and germanium. proc. Intern. conf "Radiation Effects in Semiconductors. Ser. N 31 (Dubrovnic. 1976). Inst. of Phys. London and Bristol, p. 12-29, 1977.
 
11. Y. Tokuyama, M. Suezawa, and N. Fukata, T. Taishi and K. Hoshikawa, Occupation site change of self-interstitials and group-III acceptors in Si crystals: Dopant dependence of the Watkins replacement efficiency. Phys. Rev. B 69, 125217- 7 (2004).
https://doi.org/10.1103/PhysRevB.69.125217
 
12. R. cAr, P.J. KEllY, A Oshiyama, and s.T. Pantelides, Microscopic theory of atomic diffusion mechanisms in silicon. Phys. Rev. Lett. 52 (20), p. 1814-1817 (1984).
https://doi.org/10.1103/PhysRevLett.52.1814
 
13. p. Pecheur, E. Kauffer, M. Gerl, Tight-binding study of the lattice vAcAncY in semiconductors. Proc. intern. Conf. "Defects and Radiation Effects in Semiconductors ". Ser. N 46 (Nice, 1978). Inst. of Phys. Bristol and London, Chapter 2, p. 174- 179, 1979.
 
14. Ap. Dolgolenko, p.o. Litovchenko, M.D. Varentsov, o.p. Gaidar, Ap. Litovchenko, Particularities of the formation of radiation defects in silicon with low and high concentrations of oxygen. Phys. status solidi (b) 243 (8), p. 1842-1852 (2006).
https://doi.org/10.1002/pssb.200541074
 
15. p. Pellegrino, p. Leveque, J. Lalita, A HAllEn, c. Jagadish, B.o. Svensson, Annealing kinetics of vacancy-related defects in low-dose MEV self-ion-implanted n-TYpE siIicon. Phys. Rev. B 64, 195211-10 (2001).
https://doi.org/10.1103/PhysRevB.64.195211
 
16. R.E. Whan, Oxygen-defect complexes in neutron-irradiated silicon. J. Appl. Phys. 37 (9), p.3378- 3382 (1966).
https://doi.org/10.1063/1.1708867
 
17. J.W. Corbett, O.D. Watkins, R.M. Chrenko, R.S. McDonald, Defects in irradiated silicon.II. Infrared absorption of the Si - A center. Phys. Rev. 121 (4), p. 1015-1022 (1961).
https://doi.org/10.1103/PhysRev.121.1015
 
18. B.o. Svensson, J.L. Lindstrom, Kinetic study of the 830 and 889 cm-1 infrared bands during annealing of irradiated silicon. Phys. Rev. B 34 (12), p. 8709-8717 (1986).
https://doi.org/10.1103/PhysRevB.34.8709
 
19. Kh. A. Abdullin, B.N. Mukashev, M.F. Tamendarov, and T.B. Tashenov, New defect states in irradiated p-TYpE silicon. Phys. Lett. A 144 (3), p. 198-200 (1990).
https://doi.org/10.1016/0375-9601(90)90700-X
 
20. A. Mattoni, F. Bernardini, and L. Colomboo, Self-interstitial trapping by carbon complexes in crystalline si1icon. Phys. Rev. B 66 (19), 195214-6 (2002).
https://doi.org/10.1103/PhysRevB.66.195214
 
21. Ap. Dolgolenko, O.P.Gaidar, M.D. Varentsov, p.o. Litovchenko, The influEncE of germanium dopant on radiation hardness of silicon with high oxygen concentration. Problems 0f Atomic Science and Technology. Series "Physics of Radiation Effects and Radiation Materials Science" 92, N 2, p. 28-36 (2008).
 
22. c.p. Ewels and R. Jones, S.Oberg, J. Miro and p. Deak, Shallow thermal donor defects in silicon. Phys. Rev. Lett. 77 (5), p. 865-868 (1996).
https://doi.org/10.1103/PhysRevLett.77.865
 
23. O.P. Gaidar, A.p. Dolgolenko, p.o. Litovchenko, Thermal annealing of radiation-induced defects in n-Si irradiated with fast reactor neutrons. Ukr. J. Phys. 53 (7), p. 688-693 (2008).
 
24. L.I. Khirunenko, M.o. Sosnin, Yu.V. Pomozov, L.I. Murin, V.p. Markevich, A.R. Peaker, L.M. Almeida, J. Coutinho, and V.J.B. Torres, Formation of interstitial carbon-interstitial oxygen complexes in silicon: Local vibrational mode spectroscopy and density functional theory. Phys. Rev. B 78 (15), 155203-8 (2008).
https://doi.org/10.1103/PhysRevB.78.155203
 
25. R. Jones and S. Oberg, Oxygen frustration and the interstitial carbon-oxygen complex in Si. Phys. Rev. Lett. 68 (1), p. 86-89 (1992).
https://doi.org/10.1103/PhysRevLett.68.86
 
26. M.W. Thompson, Defects and Radiation Damage in Metals. Mir, Moscow, p. 25, 1971 (in Russian).
 
27. A. M. Frens, M. T. Bennebroek, A. Zakrzewski, J. Schmidt, W.M. chEn, E. Janzen, J.L. Lindstrom, B. Monemar, Observation of rapid direct charge transfer between deep defects in silicon. Phys. Rev. Lett. 72 (18), p. 2939-2942 (1994).
https://doi.org/10.1103/PhysRevLett.72.2939
 
28. Y.H. Lee, N.N. Gerasimenko, J.W. Corbett, EPR study of neutron-irradiated silicon: A positive charge state of the <100> split di-interstitial. Phys. Rev. B 14 (10), p. 4506-4520 (1976).
https://doi.org/10.1103/PhysRevB.14.4506
 
29. L.I. Murin, Y.p. Markevich, J.L. Lindstrom, M. Kleverman, J. Hermansson, T. Hallberg, B.o. Svensson, Carbon-oxygen-related complexes in irradiated and heat-treated silicon: IR absorption studies. Solid State Phenomena 82-84, p. 57-62 (2002).
https://doi.org/10.4028/www.scientific.net/SSP.82-84.57
 
30. p.M. MoonEY, L.J. Cheng, M. Suli, J.D. Gerson, and J.W. Corbett, Defect energy levels in boron-doped silicon irradiated with 1-MeV electrons. Phys. Rev. B 15 (8), p. 3836-3843 (1977).
https://doi.org/10.1103/PhysRevB.15.3836
 
31. C.p. Ewels, R. Jones, S. Oberg, J. Miro, p. Deak, Shallow thermal donor defects in silicon. Phys. Rev. Lett. 77 (5), p. 865-868 (1996).
https://doi.org/10.1103/PhysRevLett.77.865
 
32. A. Mattoni, F. Bernardini, and L. colombo, Self-interstitial trapping bY carbon complexes in crystalline silicon. Phys. Rev. B 66, 195214-6 (2002).
https://doi.org/10.1103/PhysRevB.66.195214