Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 2. P. 091-116.
https://doi.org/
10.15407/spqeo15.02.091



References

1. M.J. Powell and S.C. Deane, Improved defect-pool model for charged defects in amorphous silicon. Phys. Rev. B, 48, No.15, 10815 (1993).
https://doi.org/10.1103/PhysRevB.48.10815
 
2. M.J. Powell and S.C. Deane, Defect-pool model and the hydrogen density of states in hydrogenated amorphous silicon. Phys. Rev. B, 53, No.15, p. 10121 (1996).
https://doi.org/10.1103/PhysRevB.53.10121
 
3. C. Longeaud, J.A. Schmidt, and R.R. Koropecki, Determination of semiconductor band gap state parameters from photoconductivity measurements. II. Experimental results. Phys. Rev. B, 73, No.23, 235317 (2006).
https://doi.org/10.1103/PhysRevB.73.235317
 
4. L. Ley, Band tails of a-Si:H: photoemission and absorption data, in: Properties of Amorphous Silicon and its Alloys, ed. by Tim Searle (University of Sheffield, UK). Publ. by INSPEC, The Institution of Electrical Engineers, London, UK, 1998, p. 113.
 
5. Jianjun Liang, E.A. Schiff, S. Guha, Baojie Yan, and J. Yang, Hole-mobility limit of amorphous silicon solar cells. Appl. Phys. Lett. 88, 063512 (2006);
https://doi.org/10.1063/1.2170405
 
Parameter Values for Modeling Photocarrier Processes in Hydrogenated Amorphous Silicon, http://physics.syr.edu/~schiff/AMPS/SU_Parameter_Suggestions.html
 
6. Wataru Futako, Toshio Kamiya, Charles M. Fortmann, Isamu Shimizu, The structure of 1.5±2.0 eV band gap amorphous silicon prepared by chemical annealing. J. Non-Cryst. Solids, 266-269, p. 630 (2000).
https://doi.org/10.1016/S0022-3093(99)00756-5
 
7. Saad M. Malik, Stephen K. O'Leary, An analysis of the distributions of electronic states associated with hydrogenated amorphous silicon. J. Mater. Sci: Materials in Electronics, 16, p. 177 (2005).
https://doi.org/10.1007/s10854-005-6598-1
 
8. Biometeorology, ESPM 129, Lecture 9, Solar Radiation, Part 2, Earth-Sun Geometry, http://nature.berkeley.edu/biometlab/espm129/pdf/Lecture%209%20espm%20129.pdf
 
9. Solar Concepts, http://www.usc.edu/dept/architecture/mbs/tools/vrsolar/Help/solar_concepts.html
 
10. C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, Elipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation, J. Appl. Phys. 83, No. 6, 3323 (1998).
https://doi.org/10.1063/1.367101
 
11. Handbook of Optical Constants of Solids, ed. by E.D. Palic. Academic Press, New York, 1997, p. 749.
 
12. H. Hoppe, N.S. Sariciftci and D. Meissner, Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells. Mol. Cryst. Liquid Cryst. 385, [233]/113 (2002).
 
13. S.H. Lin, Y.C. Chan, D.P. Webb, Y.W. Lam, Investigation of mis-estimation of structure of amorphous silicon in ellipsometric modelling. J. Non-Cryst. Solids, 276, p. 35 (2000).
https://doi.org/10.1016/S0022-3093(00)00264-7
 
14. A.H. Mahan, Structural information on from IR and Raman spectroscopy, in: Properties of Amorphous Silicon and its Alloys, ed. by Tim Searle (University of Sheffield, UK). Publ. by INSPEC, The Institution of Electrical Engineers, London, UK, 1998, p. 39.
 
15. Lance W. Barron, Jason Neidrich, Santosh K. Kurinec, Optical, electrical, and structural properties of sputtered aluminum alloy thin films with copper, titanium and chromium additions. Thin Solid Films, 515, p. 3363 (2007).
https://doi.org/10.1016/j.tsf.2006.09.030
 
16. http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173.html
 
17. Christian Gueymard, SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: algorithms and performance assessment, (1995). http://www.fsec.ucf.edu/en/publications/pdf/FSEC-PF-270-95.pdf
 
18. R.A. Street, Hydrogenated Amorphous Silicon. Cambridge University Press, 1991.
https://doi.org/10.1017/CBO9780511525247
 
19. A.V. Sachenko, A.I. Shkrebtii, T.V. Panichevskaya, Theoretical model of solar cell with contact grid. Optoelektronika i poluprovodnikovaya tekhnika, 21, p. 63 (1991), in Russian.
 
20. A.V. Sachenko, A.V. Gorban', On the collection of photocurrent in solar cells with a contact grid. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2, No.2, p. 42 (1999).
 
21. Chen Chen, Zhenguo Ji, Chao Wang, Lina Zhao, Qiang Zhou, P-type tin-indium oxide films prepared by thermal oxidation of metallic InSn alloy films. Mater. Lett. 60, p. 3096 (2006).
https://doi.org/10.1016/j.matlet.2006.02.049