Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 2. P. 139-146.
References 1. J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors. Repts. Prog. Phys. 69, p. 327-396 (2006).https://doi.org/10.1088/0034-4885/69/2/R02 2. H. Wong, H. Iwai, On the scaling issues and high replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectr. Eng. 83, p. 1867-1904 (2006). https://doi.org/10.1016/j.mee.2006.01.271 3. O. Engstrem, B. Raeissi, S. Hall, O. Buiu, M.C. Lemme, H.D.B. Gottlob, P.K. Hurley, and K. Cherkaoui, Navigation aids in the search for future high-k dielectrics: Physical and electrical trends. Solid-State Electronics 51, p. 622-626 (2007). https://doi.org/10.1016/j.sse.2007.02.021 4. P.K. Hurley, K. Cherkaoui, E. O'Connor, et al., Interface defects in HfO2, LaSiOx, and Gd2O3 high-k/metal-gate structures on silicon. J. Electrochem. Soc. 155, p. G13-G20 (2008). https://doi.org/10.1149/1.2806172 5. A. Laha, E. Bugiel, H.J. Osten, and A. Fissel, Crystalline ternary rare earth oxide with capacitance equivalent thickness below 1nm for high-K application. Appl. Phys. Lett. 88, 172107 (2006). https://doi.org/10.1063/1.2198518 6. Q.-Q. Sun, A. Laha, S.-J. Ding, D.W. Zhang, H.J. Osten, and A. Fissel, Effective passivation of slow interface states at the interface of single crystalline Gd2O3 and Si(100). Appl. Phys. Lett. 92, 152908 (2008). https://doi.org/10.1063/1.2912523 7. P. Hurley, M. Pijolat, K. Cherkaoui et al., The formation and characterisation of lanthanum oxide based Si/high-k/NiSi gate stacks by electron-beam evaporation: an examination of in-situ amorphous silicon capping and NiSi formation. ECS Transactions, 11, p. 145-156 (2007). https://doi.org/10.1149/1.2779556 8. H.D.B. Gottlob, T. Echtermeyer, M. Schmidt et al., 0.86-nm CET gate stacks with epitaxial Gd2O3 high-k dielectrics and FUSI NiSi metal electrodes. IEEE Electron. Dev. Lett. 27, p. 814-816 (2006). https://doi.org/10.1109/LED.2006.882581 9. S.R. Eliott, A.c. conduction in amorphous chalkogenide and pnictide semiconductors. Advances in Physics 36, p. 135-218 (1987). https://doi.org/10.1080/00018738700101971 10. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 32, p. R57-R70 (1999). https://doi.org/10.1088/0022-3727/32/14/201 11. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials. Oxford, Oxford University Press, 1979. 12. J.C. Dyre, The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 64, p. 2456-2468 (1988). https://doi.org/10.1063/1.341681 13. N. Imanaka, Physical and chemical properties of rare-earth oxides, in: Binary Rare-Earth Oxides, ed. by G. Adachi, N. Imanaka, Z.C. Kang. Dordrecht, Kluwer Acad. Publ., 2004. 14. J. Bisquert, V. Halpern, F. Henn, Simple model for ac ionic conduction in solids. J. Chem. Phys. 122, 151101 (2005). https://doi.org/10.1063/1.1896359 15. X. Guo, S. Mi, and R. Waser, Nonlinear electrical properties of grain boundaries in oxygen ion conductors: acceptor-doped ceria. Electrochem. and Solid-State Lett. 8, p. J1-J3 (2005). https://doi.org/10.1149/1.1830393 16. K.P. McKenna, A.L. Shluger, Electronic properties of defects in polycrystalline dielectric materials. Microelectr. Eng. 86, p. 1751-1755 (2009). https://doi.org/10.1016/j.mee.2009.03.125 17. P. Nigels, Electronic transport in amorphous semiconductors, in: Amorphous Semiconductors, ed. by M.H Brodsky. Berlin, Springer-Verlag, 1985. 18. H. Bettger, V.V. Bryksin, Hopping conductivity in ordered and disordered solids (I). Phys. stat. sol. (b), 78, p. 9-56 (1976). https://doi.org/10.1002/pssb.2220780102 19. D. Misra and N.A. Chowdhury, Charge trapping in high-k gate dielectrics: a recent understanding. ECS Transactions, 2, p. 311-328 (2006). 20. S. Guha and V. Narayanan, Oxygen vacancies in high dielectric constant oxide-semiconductor films. Phys. Rev. Lett. 98, 196101 (2007). https://doi.org/10.1103/PhysRevLett.98.196101 21. J.L. Lyons, A. Janotti, C.G. Van de Walle, The role of oxygen-related defects and hydrogen impurities in HfO2 and ZrO2. Microelectr. Eng. 88, p. 1452-1456 (2011). https://doi.org/10.1016/j.mee.2011.03.099 22. J.L. Gavartin, D. Mucoz Ramo, A.L. Shluger, G. Bersuker, and B.H. Lee, Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 082908 (2006). https://doi.org/10.1063/1.2236466 23. K. Xiong and J. Robertson, Oxygen vacancies in high dielectric constant oxides La2O3, Lu2O3, and LaLuO3. Appl. Phys. Lett. 95, 022903 (2009). https://doi.org/10.1063/1.3176214 24. D. Liu, S.J. Clark and J. Robertson, Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 96, 032905 (2010). https://doi.org/10.1063/1.3293440 25. Yu.V. Gomeniuk, Determination of interface states in high-k dielectric-silicon system from conductance-frequency measurements. Semiconductor Physics, Quantum Electronics and Optoelectronics, 15, p. 1-7 (2012). https://doi.org/10.15407/spqeo15.01.001 26. S.M. Sze, Physics of Semiconductor Devices. New York, John Wiley & Sons, 1981. 27. A. Fissel, M. Czernohorsky and H.J. Osten, Characterization of crystalline rare-earth oxide high-K dielectrics grown by molecular beam epitaxy on silicon carbide. J. Vac. Sci. Technol. B24, p. 2115-2118 (2006). https://doi.org/10.1116/1.2214702 28. M. Badylevich, S. Shamuilia, V.V. Afanas'ev, and A. Stesmans, A. Laha, H.J. Osten, and A. Fissel, Investigation of the electronic structure at interfaces of crystalline and amorphous Gd2O3 thin layers with silicon substrates of different orientations. Appl. Phys. Lett. 90, 252101 (2007). https://doi.org/10.1063/1.2746419 29. A. Fissel, Z. Elassar, O. Kirfel, E. Bugiel, M. Czernohorsky, and H.J. Osten, Interface formation during molecular beam epitaxial growth of neodymium oxide on silicon. J. Appl. Phys. 99, 074105 (2006). https://doi.org/10.1063/1.2188051 30. J.M.J. Lopes, M. Roeckerath, T. Heeg et al., Amorphous lanthanum lutetium oxide thin films as an alternative high-k gate dielectric. Appl. Phys. Lett. 89, 222902 (2006). https://doi.org/10.1063/1.2393156 31. W.K. Chim, T.H. Ng, B.H. Koh, W.K. Choi, J.X. Zheng, C.H. Tung, and A.Y. Du, Interfacial and bulk properties of zirconium dioxide as a gate dielectric in metal-insulator-semiconductor structures and current transport mechanisms. J. Appl. Phys. 93, p. 4788-4793 (2006). https://doi.org/10.1063/1.1561995 32. A.A. Dakhel, Poole-Frenkel electrical conduction in europium oxide films deposited on Si(100). Cryst. Res. Technol. 38, p. 968-973 (2003). https://doi.org/10.1002/crat.200310122 33. C. L. Yuan, P. Darmawan, M.Y. Chan and P.S. Lee, Leakage conduction mechanism of amorphous Lu2O3 high-k dielectric films fabricated by pulsed laser ablation. Europhys. Lett. 77, 67001 (2007). https://doi.org/10.1209/0295-5075/77/67001 34. H.-M. Kwon, W.-H. Choi, I.-S. Han, M.-K. Na, S.-U. Park, J.-D. Bok, C.-Y. Kang, B.-H. Lee, R. Jammy, H.-D. Lee, Carrier transport mechanism in La-incorporated high-k dielectric/metal gate stack MOSFETs. Microelectr. Eng. 88, p. 3399-3403 (2011). https://doi.org/10.1016/j.mee.2010.04.002 35. K. Matano, K. Funamizu, M. Kouda, et al., Electrical characteristics of rare earth (La, Ce, Pr and Tm) oxides/silicates gate dielectric. ECS Transactions, 27, p. 1129-1134 (2010). https://doi.org/10.1149/1.3360761 |