Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 2. P. 170-175.
https://doi.org/
10.15407/spqeo15.02.170



References

1. T. Irisawa, T. Numata, T. Tezuka, K. Usuda, N. Hirashita, N. Sugiyama, E. Toyoda, and S. Takagi, High Performance Uniaxially Strained SGOI pMOSFETs Fabricated by Lateral Strain Relaxation Technique on Globally Strained SGOI// IEEE Trans. Electron Devices 53, p. 2809-2815 (2006).
https://doi.org/10.1109/TED.2006.884078
 
2. D.L. Smith, Strain-generated electric fields in [111] growth axis strained-layer superlattices. Solid State Commun. 57, p. 919-921 (1986).
https://doi.org/10.1016/0038-1098(86)90924-5
 
3. D.L. Smith and C. Mailhiot, Theory of semiconductor superlattice electronic structure// Rev. Mod. Phys. 62, p. 173-234 (1990).
https://doi.org/10.1103/RevModPhys.62.173
 
4. B.K. Laurich, K. Elcess, C.G. Fonstad, J.G.Beery, C. Mailhot and D.L. Smith, Optical Properties of (100) - and (111)-Oriented GaInAs/GaAs Strained-Layer Superlattices. Phys. Rev. Lett. 62 p. 649 (1989).
https://doi.org/10.1103/PhysRevLett.62.649
 
5. I. Sela, D.E. Watkins, B.K. Laurich, D.L. Smith, S. Subbanna and H. Kroemer, Excitonic optical nonlinearity induced by internal field screening in (211) oriented strained-layer superlattices. Appl. Phys. Lett. 58 p. 684 (1991).
https://doi.org/10.1063/1.104568
 
6. K. W. Goossen, E.A. Caridi, T.Y. Chang, J.B. Stark, D.A.B. Miller, and R.A. Morgan, Observation of room-temperature blue shift and bistability in a strained InGaAs-GaAs self-electro-optic effect device Direct demonstration of a misfit strain-generated electric field in a [111] growth axis zinc-blende heterostructure. Appl. Phys. Lett. 56 p. 715 (1990).
https://doi.org/10.1063/1.102690
 
7. E. A. Caridi, T. Y. Chang, K. W. Goossen and L. Eastman, Direct demonstration of a misfit strain-generated electric field in a [111] growth axis zinc-blende heterostructure.Appl. Phys. Lett. 56 p. 659 (1990).
https://doi.org/10.1063/1.102729
 
8. C. F. Wan, J. D. Luttmer, R. S. List, and R. L. Strong, Piezoelectric effects in HgCdTe devices. Journal of Electronic Materials 24 p. 1293-1297 (1995).
https://doi.org/10.1007/BF02653087
 
9. A. T. Paxton, A. Sher, M. Berding, M. Van Schilfgaarde, and M. W. Muller, How dislocations affect transport.Journal of Electronic Materials 24 p. 525 (1995).
https://doi.org/10.1007/BF02657958
 
10. R. Andre, C. Deshayes, J. Cibert, L. S. Dang, S. Tatarenko and K. Saminadayar, Optical studies of the piezoelectric effect in (111)-oriented CdTe/ Cd1-xZnxTe strained quantum wells.Phys. Rev. B 42 p.11392-11395 (1990).
https://doi.org/10.1103/PhysRevB.42.11392
 
11. V. Ortiz, N. T. Pelekanos, and G. Mula, Efficient all-optical light modulation in a piezoelectric heterostructure at room temperature. Appl. Phys. Letters 72 p.963 (1998).
https://doi.org/10.1063/1.120935
 
12. D.L. Smith, Piezoelectric effects in strained layer heterostructures grown on novel index. Microelectronics Journal Volume 28 p.707 (1997).
https://doi.org/10.1016/S0026-2692(96)00108-5
 
13. Peng Fei, Ping-Hung Yeh, Jun Zhou, Sheng Xu, Yifan Gao, Jinhui Song, Yudong Gu, Yanyi Huang, and Zhong Lin Wang, Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire. Nano Letters 9 p.3435 (2009).
https://doi.org/10.1021/nl901606b
 
14. S. Patil, B. Wen and R. V. N. Melnik, Strain Effects and Temperature-Dependent Phase Stability of II-VI Semiconductor Nanostructures. AIP Conf. Proc. 1199 p.303 (2010).
https://doi.org/10.1063/1.3295422
 
15. V. Yakushev, V. S. Varavin, V. V. Vasiliev, S. A. Dvoretsky, I. V. Sabinina, U. G. Sidorov, A. Sorochkin, and A. L. Aseev, Photodiodes, ed Jeong-Woo Park (InTech), (2011) p. 367-400.
 
16. Yu. L. Tkhorik and L. S. Khazan, Plastic Deformation and Misfit Dislocations in Heteroepitaxial Systems (Kiev: Naukova Dumka) [in Russian] (1983) p.304.
 
17. R.N. Jacobs, L.A. Almeida, J. Markunas, J. Pellegrino, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, S. B. Qadri, T. Lee, and M. Kim.Journal of Electronic Materials 37 p. 1480 (2008).
https://doi.org/10.1007/s11664-008-0519-z
 
18. K. Arimoto, and K. Nakagawa, Elastic theory for strained heterostructures with in-plane anisotropy.J. Appl. Phys. 104, p. 063512-8 (2008).
https://doi.org/10.1063/1.2977673
 
19. T. Ashley, C. T. Elliott, and A. T. Harker, Non-equilibrium modes of operation for infrared detectors. Infrared Phys. 26, p. 303-315 (1986).
https://doi.org/10.1016/0020-0891(86)90008-4
 
20. J. Piotrowski and A. Rogalski, Uncooled long wavelength infrared photondetectors. Infrared Physics Technology 46, p. 115-131 (2004).
https://doi.org/10.1016/j.infrared.2004.03.016
 
21. T. Kryshtab, R. Savkina, F. Sizov, A. Smirnov, M. Kladkevich, and V. Samoylov, Infrared radiation detection by a piezoelectric heterostructure at room temperature. Physica Status Solidi (c) 9, in press (2012).
https://doi.org/10.1002/pssc.201100608
 
22. F.F. Sizov, A.B. Smirnov, R.K. Savkina, V.A. Deriglazov, M.V. Yakushev, Narrow-gap piezoelectric heterostructure as IR detector. Semiconductor physics, quantum electronics and photoelectronics 15, p. 65-71 (2012).
https://doi.org/10.15407/spqeo15.01.065