Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 2. P. 176-180.
https://doi.org/
10.15407/spqeo15.02.176



References

1. M. Farahmand, C. Garetto, Enrico Bellotti et al., Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: Binaries and ternaries. IEEE Trans. Electron. Devices, 48(3), p. 535-542 (2001).
 
2. S. Vitanov, V. Palankovski, Monte Carlo study of transport properties of InN. Springer Proc. in Physics, 119(2), p. 97-100 (2007).
 
3. O'Leary, B. Foutz, M. Shur, L. Eastman, Electron transport in wurtzite indium nitride. J. Mater. Sci., 21(3), p. 218-230 (2010).
 
4. S.K. O'Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Monte Carlo simulation of electron transport in wurtzite aluminum nitride. Solid State Communs. 105(10), p. 621-626 (1998).
https://doi.org/10.1016/S0038-1098(97)10207-1
 
5. C. Sevika, C. Bulutayb, Efficiency and harmonic enhancement trends in GaN-based Gunn diodes: Ensemble Monte Carlo analysis. Appl. Phys. Lett. 85(17), p. 3908-3810 (2004).
https://doi.org/10.1063/1.1812376
 
6. G. Aloise, S. Vitamov, V. Palankovski, Perfor-mance study of nitride-based Gunn diodes. NSTI-Nanotech., 2(6), p. 599-602 (2011).
 
7. R.F. Macpherson, G.M. Dunn and N.J. Pilgrim, Simulation of gallium nitride Gunn diodes at various doping levels and temperatures for frequencies up to 300 GHz by Monte Carlo simulation, and incorporating the effects of thermal heating. Semicond. Sci. and Technol., 23(5), 055005 (2008).
https://doi.org/10.1088/0268-1242/23/5/055005
 
8. I.P. Storozhenko, Yu.V. Arkusha, Respective for using Gunn diodes on the base GaN, AlN and InN. Radiophys. and Electron., 16(1), p. 58-63 (2011).
 
9. Lin'an Yang Wei Mao, Qingyang Yao, Qi Liu, Xuhu Zhang, Jincheng Zhang, Yue Hao, Temperature effect on the submicron AlGaN/GaN Gunn diodes for terahertz frequency. J. Appl. Phys., 109(2), p. 109-114 (2011).
 
10. O. Yilmazoglu, K. Mutamba, D. Pavlidis, T. Karaduman, First observation of bias oscillations in GaN Gunn diodes on GaN substrate. IEEE Trans. Electron. Devices, 55(7), p. 1563-1567 (2008).
https://doi.org/10.1109/TED.2008.921253
 
11. E. Alekseev, A. Eisenbach, D. Pavlidis, S.M. Hubbard, W. Sutton, Development of GaN-based Gunn-effect millimeter-wave sources. Proc. 24th Workshop on Compound Semiconductor Devices and Integrated Circuits (WOCSDICE'00), Aegean Sea, Greece, Session 12, May 2000, Paper Session 12.
 
12. N.R. Couh, P.H. Beton, M.J. Kelly et al., The use of linearly graded composition AlGaAs injectors for intervalley transfer in GaAs: theory and experiment. Solid State Electron. 31(4), p. 613-616 (1988).
https://doi.org/10.1016/0038-1101(88)90353-X
 
13. I.P. Storozhenko, E.D. Prokhorov, Yu.V. Arkusha, Simulation of transferred electron devices with linearly graded composition of 3-5 three-fold semiconductor in active zone. Intern. J. Infrared and Millimeter Waves, 25(6), p. 879-890 (2004).
https://doi.org/10.1023/B:IJIM.0000030787.58751.fd
 
14. I.P. Storozhenko, Gunn diodes on base of variband with different cathode contacts. Radiophys. and Radioastronom., 11(2), p. 186-197 (2006).
 
15. I.P. Storozhenko, Yu.V. Arkusha, E.D. Prokhorov, Influence of the variband-layer thickness on the energy and frequency characteristics of Gunn diodes. J. Communs. Technol. and Electron., 51(3), p. 352-358 (2006).
https://doi.org/10.1134/S1064226906030156
 
16. I.P. Storozhenko, E.N. Zhivotova, Frequency of Gunn diodes on the basis of AlGaAs, GaPAs and GaSbAs graded gap semiconductors. Telecommunications and Radio Engineering, 70(7), pp. 1295-1304 (2011).
https://doi.org/10.1615/TelecomRadEng.v70.i14.80