Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 2. P. 111-116.
DOI: https://doi.org/10.15407/spqeo16.02.111


References

1. M.I. Łukasiewicz, A. Wójcik-Głodowska, E. Guziewicz et al., ZnO, ZnMnO and ZnCoO films grown by Atomic Layer Deposition. Semicond. Sci. Technol. 27(7), 074009, 14 pages (2012).
 
2. W. Fuhs, ZnO layers for solar cells, Part V: Device applications. Proc. the NATO Advanced Research Workshop on Zinc Oxide as a Material for Micro- and Optoelectronic Applications, St. Petersburg, Russia, 23-25 June 2004, Eds. N.H. Nickel and E. Terukov, p. 197-211. Springer, Printed in the Netherlands (2005).
 
3. A.L. Cai, J.F. Muth, The refractive index and other properties of doped ZnO films. Mat. Res. Soc. Symp. Proc. – Symposium C – New application for wide band-gap semiconductors, 764, p. C3.21.1-C3.21.6 (2003).
 
4. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, Effect of Si layer in the ZnO thin films by pulsed laser deposition. Mat. Res. Soc. Symp. Proc. – Symposium C – New application for wide band-gap semiconductors, 764, p. C3.12.1-C3.12.6 (2003).
 
5. Lin Way, Ma Ruixin, Shao Wei, Kang Bo, Wu Zhongliang, Properties of doped ZnO transparent conductive thin films deposited by rf magnetron sputtering using a series of high quality ceramic targets. Rare Metals, 27(1), p. 32-36 (2008).
https://doi.org/10.1016/S1001-0521(08)60025-X
 
6. A.Kh. Abduev, A.Sh. Asvarov, A.K. Akhmedov, I.K. Kamilov, S.N. Sulyanov, Growth mechanism of ZnO layers, Part I. Proc. the NATO Advanced Research Workshop on Zinc Oxide as a Material for Micro- and Optoelectronic Applications, St. Petersburg, Russia, 23-25 June 2004, Eds. N.H. Nickel and E. Terukov, p. 15-24. Springer, Printed in the Netherlands (2005).
 
7. E. Kaminska, A. Piotrowska, J. Kossut et al., p-type in ZnO:N by codoping with Cr. Mat. Res. Soc. Symp. Proc. – Symposium E – Fundamentals of novel oxide/semiconductor interfaces, 786, p. E6.1.1-E6.1.6 (2003).
 
8. C.E. Rice, G.S. Tiompa, L.G. Provost, N. Sbrockey, J. Cuchiaro, MOCVD zinc oxide films for wide bandgap applications. Mat. Res. Soc. Symp. Proc. – Symposium C – New application for wide band-gap semiconductors, 764, p. C3.10.1-C3.10.6 (2003).
 
9. T. Kawahara, T. Ishida, H. Tada, N. Tohge, S. Ito, Positive-type patterned ZnO films prepared by a chemically modified sol-gel method. J. Mater. Sci. Lett. 21, p. 1423-1425 (2002).
https://doi.org/10.1023/A:1019966700345
 
10. S. Gieraltowska, L. Wachinski, B.S. Witkowski, M. Godlewski, and E. Guziewicz, Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications. Thin Solid Films, 520, p. 4694-4697 (2012).
https://doi.org/10.1016/j.tsf.2011.10.151
 
11. T. Krajewski, E. Guzievicz, M. Godlewski et al., The influence of growth temperature and precursors' doses on electrical parameters of ZnO thin films grown by atomic layer deposition technique. Microelectron. J. 40, p. 293-295 (2009).
https://doi.org/10.1016/j.mejo.2008.07.053
 
12. http://www.euronanoforum2011.eu/wp-content/uploads/2011/09/enf2011_energy-electronics_ayala_fin.pdf
 
13. K.V. Kolezhuk, A.V. Komashchenko, P.P. Gorbik, N.O. Mai, G.I. Sheremetova, High-effective photoconverter based on polycrystalline structures AIIBVI. Pis'ma Zhurnal Tekh. Fiziki, 26(5), p. 1-6 (2000), in Russian.
 
14. K.V. Kolezhuk, A.V. Komashchenko, G.I. Sheremetova, Yu.N. Bobrenko, Multilayer heterostructures based on polycrystalline films of A2B6 compounds. Tekhnologia konstruirovanie v electron. apparature, 2, p. 49-50 (2003), in Russian.
 
15. A. Wojcik, M. Godlewski, E. Guzievicz, R. Minikaev, and W. Paszkovicz, Controlling of preferential growth mode of ZnO thin films by atomic layer deposition. J. Crystal Growth, 310, p. 284-289 (2008).
https://doi.org/10.1016/j.jcrysgro.2007.10.010
 
16. E. Przezdziecka, L. Wachnicki, W. Paszkowicz, E. Lusakowska, T. Krajewski, G. Luka, E. Guziewicz, M. Godlewski, Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature. Semicond. Sci. Technol. 24, 105014, 9 pages (2009).
 
17. A. Tsukazaki, A. Ohtomo, M. Kawasaki, High mobility electronic transport in ZnO thin films. Appl. Phys. Lett. 88(15), 152106, 3 pages (2006).
 
18. T.J. Coutts, X. Li, T.M. Barnes, B.M. Keyes, K.L. Perkins, S.E. Asher, S.B. Zhang, Su-Huai Wei, Synthesis and characterization of nitrogen doped ZnO films grown by MOCVD, Chap.3. Zinc-Oxide Bulk, Thin Films and Nanostructures, Eds. C. Jagadish and S. Pearton, p. 43-84, Elsevier Ltd (2006).
 
19. T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Electron transport in ZnO thin films. Appl. Phys. Lett. 87(2), 022101, 3 pages (2005).
 
20. M. Grundmann, H. von Wenckstern, R. Pickenhain, S. Weinhold, B. Chengui, O. Breitenstein, Electrical properties of ZnO thin films and syngle crystals, Part II. Proc. the NATO Advanced Research Workshop on Zinc Oxide as a Material for Micro- and Optoelectronic Applications, St. Petersburg, Russia, 23-25 June 2004, Eds. N.H. Nickel and E. Terukov, p. 47-58, Springer, Printed in the Netherlands (2005).