Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 2. P. 123-127.
References 1. V.M. Fridkin, Ferroelectrics Semiconductors. Consultans Bureau, New York, 1980.2. S. Surthi, S. Kotru, R.K. Pandey, SbSI films for ferroelectric memory applications. Integr. Ferroelectr., 48(1), p. 263-269 (2002). https://doi.org/10.1080/10584580215458 3. P. Muralt, Micromachined infrared detectors based on pyroelectric thin films. Repts. Progr. Phys., 64(10), p. 1339-1388 (2001). https://doi.org/10.1088/0034-4885/64/10/203 4. M. Nowak, P. Mroczek, P. Duka et al., Using of textured polycrystalline SbSI in actuators. Sens. Actuators A Phys., 150(2), p. 251-256 (2009). https://doi.org/10.1016/j.sna.2009.01.005 5. V.M. Rubish, Thermostimulated relaxation of SbSI glass matrix. J. Optoelectronics and Advanced Mat., 3(4), p. 941-944 (2001). 6. V.M. Rubish, O.G. Guranich, D.S. Leonov, Ferroelectric inclusions formation in the chalcogenide glass matrix. Nanosystems, Nanomaterials, Nanotehnologies, 3(4), p. 911-920 (2005), in Ukrainian. 7. V.M. Rubish, Anomalious behaviour of dielectric permittivity of chalcogenide glasses in the vicinity crystallization temperature. Sensor Electronics and Microsystems Technologies, 1, p. 62-66 (2007), in Ukrainian. 8. V.M. Rubish, Obtaining and crystallization peculiarities of glasses on the antimony sulfoiodide basis. Physics and Chemistry of Solid State, 8(1), p. 41-46 (2007), in Ukrainian. 9. D.I. Kaynts, A.P. Shpak, V.M. Rubish et al., Formation of ferroelectric nanostructures in glassy matrix. Ferroelectrics, 371(1), p. 28-33 (2008). https://doi.org/10.1080/00150190802385010 10. V.M. Rubish, M.Yu. Rigan, S.M. Gasinets et al., Obtaining and crystallization peculiarities of antimony containing chalcogenide glasses. Ferroelectrics, 372(1), p. 87-92 (2008). https://doi.org/10.1080/00150190802381993 11. M. Barj, O.A. Mykaylo, D.I. Kaynts et al., Formation and structure of crystalline inclusions in As2S3-SbSI and As2Se3-SbSI systems glass matrices. J. Non-Cryst. Solids, 357, p. 2232-2234 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.11.095 12. Yu.M. Azhniuk, P. Bhandiwad, V.M. Rubish et al., Photoinduced changes in the structure of As2S3-based SbSI nanocrystal-containing composites studied by Raman spectroscopy. Ferroelectrics, 416, p. 113-118 (2011). https://doi.org/10.1080/00150193.2011.577718 13. Yu.M. Azhniuk, V. Stoyka, I. Petryshynets et al., SbSI nanocrystal formation in As-Sb-S-I glass under laser beam. Mat. Res. Bull., 47, p. 1520-1522 (2012). https://doi.org/10.1016/j.materresbull.2012.02.036 14. P. Gupta, A. Stone, N. Woodward et al., Laser fabrication of semiconducting ferroelectric single crystal SbSI features on chalcodenide glass. Opt. Mat. Express, 1(4), p. 652-657 (2011). https://doi.org/10.1364/OME.1.000652 15. V.M. Rubish, M.V. Dobosh, P.P. Shtets et al., Crystallization parameters of non-crystalline antimony chalcogenides. J. Phys. Studies, 8(2), p. 178-182 (2004). 16. A. Feltz, Amorphe und Glasartige Festkörper. Akademie-Verlag, Berlin, 1983. 17. V.V. Petrov, A.A. Kryuchyn, V.M. Rubish, Materials for Perspective Optoelectronic Devices. Naukova Dumka-Verlag, Kiev, 2012 (in Russian). 18. V.M. Rubish, V.O. Stefanovich, O.G. Guranich et al., Structure investigation of As-Sb-S-I system glasses by Raman spectroscopy. Nanosystems, Nanomaterials, Nanotehnologies, 6(4), p. 1119-1127 (2008), in Ukrainian. 19. V.M. Rubish, O.G. Guranich, V.V. Rubish, Structure and properties of glasses. Photoelectronics, 16, p. 41-45 (2007). 20. D.G. Georgiev, P. Boolchand, K.A. Jackson, Intrinsic nanoscale phase separation of bulk As2S3 glass. Phil. Mag., 83(25), p. 2941-2953 (2003). https://doi.org/10.1080/1478643031000151196 21. O.A. Mykaylo, O.G. Guranich, V.M. Rubish et al., Influence of composition, exposive, thermal annealing and pressure on structure and optical properties of As-S-Se chalcogenide glasses and thin films. Ferroelectrics, 372, p. 81-86 (2008). https://doi.org/10.1080/00150190802381985 22. I.D. Turyanitsa, L.K. Vodop'yanov, V.M. Rubish et al., Raman spectra and dielectric properties of glasses of the Sb-S-I system. J. Appl. Spectroscopy, 44(5) p. 501-504 (1986). https://doi.org/10.1007/BF00667077 23. J. Grigas, E. Talik, V. Lazauskas, Splitting of the XPS in ferroelectric SbSI crystalls. Ferroelectrics, 284, p. 147-160 (2003). https://doi.org/10.1080/00150190390204790 24. C.H. Perry, D.K. Agrawal, The Raman spectrum of ferroelectric SbSI. Solid State Communs. 8, p. 225-230 (1970). https://doi.org/10.1016/0038-1098(70)90634-4 25. M.K. Teng, M. Balkanski, M. Massot et al., Optical phonon analysis in the AVBVICVII compounds. Phys. Status Solidi (b), 62, p. 173-182 (1974). https://doi.org/10.1002/pssb.2220620117 26. A.V. Gomonnai, I.M. Voynarovych, A.M. Solomon et al., X-ray diffraction and Raman scattering in SbSI nanocrystals. Mat. Res. Bull., 38(13), p. 1767-1772 (2003). https://doi.org/10.1016/S0025-5408(03)00181-8 27. D.K. Agrawal, C.H. Perry, Long-wavelength optical phonons and phase transitions in SbSI. Phys. Rev. B, 4(6), p. 1893-1902 (1971). https://doi.org/10.1103/PhysRevB.4.1893 |