Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 2. P. 136-139.
DOI: https://doi.org/10.15407/spqeo16.02.136


References

1. T.S. Kavetskyy, O.I. Shpotyuk, Nanostructural voids in glassy-like As2Se3 studied with FSDP-related XRD and PALS techniques. J. Optoelectron. Adv. Mater., 7(5), p. 2267-2273 (2005).
 
2. O. Shpotyuk, A. Kozdras, T. Kavetskyy, J. Filipecki, On the correlation between void-species structure of vitreous arsenic selenide studied with X-ray diffraction and positron annihilation techniques. J. Non-Cryst. Solids, 352, p. 700-703 (2006).
https://doi.org/10.1016/j.jnoncrysol.2005.11.054
 
3. S.R. Elliott, Origin of the first sharp diffraction peak in covalent glasses. Phys. Rev. Lett., 67(6), p. 711-714 (1991).
https://doi.org/10.1103/PhysRevLett.67.711
 
4. S.R. Elliott, Medium-range structural order in covalent amorphous solids. Nature, 354, p. 445-452 (1991).
https://doi.org/10.1038/354445a0
 
5. S.R. Elliott, Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses. J. Non-Cryst. Solids, 182, p. 40-48 (1995).
https://doi.org/10.1016/0022-3093(94)00539-7
 
6. P. Hautojarvi, C. Corbel, Positron spectroscopy of defects in metals and semiconductors. In: Positron Spectroscopy of Solids, Proc. the Intern. School of Physics "Enrico Fermi", Course CXXV ed. by A. Dupasquier, A.P. Mills jr. (Villa Monastero, Italy, 6-16 July 1993), Amsterdam, Oxford, Tokyo, Washington DC, IOS Press, p. 491-532 (1995).
 
7. R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors. Defect Studies. Berlin, Heidelberg, New York, Springer-Verlag, 1999.
https://doi.org/10.1007/978-3-662-03893-2
 
8. O. Shpotyuk, J. Filipecki, Free Volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study. Czestochowa, WSP w Czestochowie (2003).
 
9. K.O. Jensen, P.S. Salmon, I.T. Penfold, P.G. Coleman, Microvoids in chalcogenide glasses studied by positron annihilation. J. Non-Cryst. Solids, 170, p. 57-64 (1994).
https://doi.org/10.1016/0022-3093(94)90103-1
 
10. T.S. Kavetskyy, O.I. Shpotyuk, V.T. Boyko, Void-species nanostructure in chalcogenide glasses studied with FSDP-related XRD. J. Phys. Chem. Solids, 68, p. 712-715 (2007).
https://doi.org/10.1016/j.jpcs.2007.02.009
 
11. P.H. Gaskell, Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data. J. Non-Cryst. Solids, 351, p. 1003-1013 (2005).
https://doi.org/10.1016/j.jnoncrysol.2005.01.011
 
12. O.P. Rachek, X-ray diffraction study of amorphous alloys Al-Ni-Ce-Sc with using Ehrenfest's formula. J. Non-Cryst. Solids, 352, p. 3781-3786 (2006).
https://doi.org/10.1016/j.jnoncrysol.2006.05.031
 
13. M.A. Popescu, Hole structure of computer models of non-crystalline materials. J. Non-Cryst. Solids, 35-36, p. 549-554 (1980).
https://doi.org/10.1016/0022-3093(80)90652-3
 
14. O. Shpotyuk, A. Kovalskiy, J. Filipecki, T. Kavetskyy, M. Popescu, Positron annihilation lifetime spectroscopy as experimental probe of free volume concepts in network glasses. Phys. Chem. Glasses: Eur. J. Glass. Sci. Technol. B, 47(2), p. 131-135 (2006).
 
15. T. Kavetskyy, O. Shpotyuk, V. Boyko, J. Filipecki, M. Popescu, On the origin of nanovoids in binary chalcogenide glasses studied by FSDP-related XRD, PALS and Monte-Carlo simulation. Visnyk Lviv Univ., Ser. Physics, 40, p. 153-158 (2007).
 
16. Kuo-Sung Liao, Hongmin Chen, Somia Awad, Jen-Pwu Yuan, Wei-Song Hung, Kuier-Rarn Lee, Juin-Yih Lai, Chien-Chieh Hu, Y.C. Jean, Determination of free-volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy. Macromolecules, 44(17), p. 6818-6826 (2011).
https://doi.org/10.1021/ma201324k
 
17. S.J. Tao, Positronium annihilation in molecular substances. J. Chem. Phys., 56(11), p. 5499-5510 (1972).
https://doi.org/10.1063/1.1677067
 
18. A. Saiter, J-M. Saiter, R. Golovchak, M. Shpotyuk, O. Shpotyuk, Cooperative rearranging region size and free volume in As-Se glasses. J. Phys.: Condens. Matter, 21(7), 075105 (2009).
https://doi.org/10.1088/0953-8984/21/7/075105
 
19. M. Singh, Y.K. Vijay, I.P. Jain, Y.S. Shishodia, Study of AsGeSe structures by positron lifetime technique. J. Non-Cryst. Solids, 93, p. 273-276 (1987).
https://doi.org/10.1016/S0022-3093(87)80172-2
 
20. T.S. Kavetskyy, O. Šauša, V.F. Valeev, V.I. Nuzhdin, N.M. Lyadov, A.L. Stepanov, Raman, positron annihilation and Doppler broadening spectroscopy of gamma-irradiated and Cu-ion implanted Ge15.8As21S63.2 glass. In book: Coherent Optics and Optical Spectroscopy: XV Intern. junior sci. school 24-26 October 2011, ed. by M.Kh. Salakhov, Kazan, Kazan Univ., 15, p. 86-89 (2011).
 
21. A. Kozdras, J. Filipecki, M. Hyla, O. Shpotyuk, A. Kovalskiy, S. Szymura, Nanovolume positron traps in glassy-like As2Se3. J. Non-Cryst. Solids, 351, p. 1077-1081 (2005).
https://doi.org/10.1016/j.jnoncrysol.2005.01.031
 
22. T. Kavetskyy, J. Borc, P. Petkov, K. Kolev, T. Petkova, Free-volume defects and microstructure in ion-conducting Ag/AgI-As2S3 glasses as revealed from positron annihilation and microhardness measurements. Solid State Ionics, 183, p. 16-19 (2011).
https://doi.org/10.1016/j.ssi.2010.12.004
 
23. T. Kavetskyy, O. Shpotyuk, I. Kaban, W. Hoyer, J. Filipecki, Nanostructural characterization of amorphous chalcogenides by X-ray diffraction and positron annihilation techniques. In book: NATO Science for Peace and Security Series B: Physics and Biophysics, "Nanostructured materials for advanced technological applications" ed. by J.P. Riethmaier, P. Petkov, W. Kulisch, C. Popov. Berlin, Springer, p. 365-370 (2009).
https://doi.org/10.1007/978-1-4020-9916-8_41
 
24. T. Kavetskyy, O. Shpotyuk, I. Kaban, W. Hoyer, V. Tsmots, On the origin of the first sharp diffraction peak in chalcogenide glasses. In book: Bulletin of center of chemotronic of glass named after V.V. Tarasov #4, Reports of scientific session in occasion of 100 years after birthday of Professor B.T. Kolomiets, Moscow, p. 112-115 (2008), in Russian.
 
25. D.V. Makhov, L.J. Lewis, Stable four-fold configurations for small vacancy clusters in silicon from ab initio calculations. Phys. Rev. Lett., 92(25), 255504(1-4) (2004).
 
26. D.V. Makhov, L.J. Lewis, Two-component density functional theory calculations of positron lifetimes for small vacancy clusters in silicon. Phys. Rev. B, 71(20), 205215(1-6) (2005).