Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 2. P. 152-161.
DOI: https://doi.org/10.15407/spqeo16.02.152


References

1. Y. Ando, Field Effect Transistors, US Patent 5371387 (1994); C. Chang, GaAs-InGaAs high electron mobility transistor, US Patent 5653440 (1995).
 
2. F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, 12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum well. Appl. Phys. Lett. 79, p. 1965-1967 (2001).
https://doi.org/10.1063/1.1405812
 
3. V.Ya. Aleshkin, A.A. Andronov, A.V. Antonov et al., Toward far- and mid-IR intraband lasers based on hot carrier intervalley/real-space transfer in multiple quantum well systems. SPIE Proc. 4318, p. 192-203 (2001).
 
4. P.A. Belevski, V.V. Vainberg, M.N. Vinoslavskii, A.V. Kravchenko, V.N. Poroshin, and O.G. Sarbey, Real-space transfer and far-infrared emission of hot electrons in InGaAs/GaAs heterostructures with tunnel-coupled quantum wells. Ukr. J. Phys. 54(1-2), p. 117-122 (2009).
 
5. N.V. Baidus, P.A. Belevskii, A.A. Biriukov, V.V. Vainberg, M.N. Vinoslavskii, A.V. Ikonnikov, B.N. Zvonkov, A.S. Pylypchuk and V.N. Poroshin, Lateral transport and far-infrared radiation of electrons in InxGa1–xAs/GaAs heterostructures with the double tunnel-coupled quantum wells in a high electric field. Semiconductors, 44, p. 1495-1498 (2010).
https://doi.org/10.1134/S1063782610110230
 
6. W. Ted. Masselink, High-differential mobility of hot electrons in delta-doped quantum wells. Appl. Phys. Lett. 59, p. 694-696 (1991).
https://doi.org/10.1063/1.105368
 
7. W. Ted. Masselink, Ionized-impurity scattering of quasi-two-dimensional quantum-confined carriers. Phys. Rev. Lett. 66(11), p. 1513-1516 (1991).
https://doi.org/10.1103/PhysRevLett.66.1513
 
8. Il-Ho Ahn, G.Hugh Song, Young-Dahl Jho, Separating the contribution of mobility among different quantum well subbands. Jpn. J. Appl. Phys. 49, 014102-014105 (2010).
https://doi.org/10.1143/JJAP.49.014102
 
9. V.A. Kulbachinskii, I.S. Vasil'evskii, R.A. Lunin, G. Galistu, Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier. Semicond. Sci. Technol. 22, p. 222-228 (2007).
https://doi.org/10.1088/0268-1242/22/3/009
 
10. T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Reviews of Modern Physics, 54 (2), p. 437-672 (1982).
https://doi.org/10.1103/RevModPhys.54.437
 
11. Gold A. Gold, A. Ghazali, J. Serre, Electronic properties of δ-doped GaAs. Semicond. Sci. Technol. 7, p. 972-979 (1992).
https://doi.org/10.1088/0268-1242/7/7/016
 
12. B.K. Ridley, The electron-phonon interaction in quasi-twodimensional semiconductor quantum-well structures. J. Phys. C: Solid State Phys., 15, p. 5899-5917 (1982).
https://doi.org/10.1088/0022-3719/15/28/021
 
13. J. Lee, H.N. Spector, V.K. Arora, Impurity scattering limited mobility in a quantum well heterojunction. J. Appl. Phys. 54(12), p. 6995-7004 (1983).
https://doi.org/10.1063/1.331963
 
14. G. Fishman and D. Calecki, Electron concentration and buffer-width dependence of Hall mobility in GaAs-GaAlAs multiple-quantum-well structures. Phys. Rev. B, 29, p. 5778-5787 (1984).
https://doi.org/10.1103/PhysRevB.29.5778
 
15. B. Laikhtman, R.A. Kiehl, Theoretical hole mobility in a narrow Si/SiGe quantum well. Phys.Rev. B, 47, p. 10515-10527 (1993).
https://doi.org/10.1103/PhysRevB.47.10515
 
16. J.M. Li, J.J. Wu, X.X. Han, Y.W. Lu, X.L. Liu, Q.S. Zhu and Z.G. Wang, A model for scattering due to interface roughness in finite quantum wells. Semicond. Sci. Technol. 20, p. 1207-1212 (2005).
https://doi.org/10.1088/0268-1242/20/12/011