Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 2. P. 170-176.
DOI: https://doi.org/10.15407/spqeo16.02.170


References

1. L. Fornaro, E. Saucedo, L. Mussio, A. Goncharov, Growth of lead iodide platelets for room temperature X-ray detection by the vapor transport method. Proc. SPIE 4507, p. 90-98 (2001).
https://doi.org/10.1117/12.450745
 
2. R. Ahuja, H. Arwin, A. Ferrera da Silva et al., Electronic and optical properties of lead iodide. J. Appl. Phys. 92(12), p. 7219-7224 (2002).
https://doi.org/10.1063/1.1523145
 
3. F.V. Motsnyi, V.G. Dorogan, Z.D. Kovalyuk, S.M. Okulov, Peculiarities of exciton and EPR spectra of 2H-PbI2 layered crystals with high concentration of Mn impurity. Ukr. J. Phys. 51(5), p. 483-486 (2006).
 
4. V.B. Kapustyanyk, R.M. Pasternak, A.Z. Kalush et al., Exciton spectra of layered PbI2 and PbI2:Zr crystals. J. Appl. Spectr. 74(2), p. 252-257 (2007).
https://doi.org/10.1007/s10812-007-0044-5
 
5. A.S. Ablitzova, V.F. Aguekian, A.Yu. Serov, Optical spectra of microcrystals of a layer semiconductor PbI2 in porous glass matrices. Fizika i tekhnika poluprov. 32(2), p. 151-154 (1998), in Russian.
 
6. A. Yamamoto, H. Nakahara, S. Yano, T. Goto, and A. Kasuya, Exciton dynamics in PbI2 ultra-thin microcrystallites. Phys. stat. sol. (b), 224(1), p. 301-305 (2001).
https://doi.org/10.1002/1521-3951(200103)224:1<301::AID-PSSB301>3.0.CO;2-N
 
7. N. Preda, L. Mihut, I. Baltog, T. Velula, V. Teodorescu, Optical properties of low-dimensional PbI2 particles embedded in polymer matrix. J. Optoelectron. & Adv. Materials, 8(3), p. 909-913 (2006).
 
8. K. Gauthorn, J-S. Lauret, L. Doyennette et al., Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Exp. 18(6), p. 5912-5918 (2010).
https://doi.org/10.1364/OE.18.005912
 
9. D.B. Mitzi, K. Chondroulis, and C.R. Kagan, Organic-inorganic electronics. IBM J. Res. Develop. 45, p. 29-45 (2001).
https://doi.org/10.1147/rd.451.0029
 
10. I. Saikumar, Shahab Ahmad, J.J. Baumberg, and G. Vijaya Praksh, Fabrication of excitonic luminescent inorganic-organic hybrid nano- and microcrystals. Scripta Materialia, 67, p. 834-837 (2012).
https://doi.org/10.1016/j.scriptamat.2012.07.048
 
11. I.Kh. Akopyan, O.N. Volkova, B.V. Novikov, B.I. Venzel, Size effects in the optical spectra of the microcrystals PbI2 and HgI2. Fizika tverdogo tela, 39(3), p. 468-473 (1997), in Russian.
 
12. R. Zheng, M. Matsuura, T. Taguchi, Exciton-LO-phonon interaction in zinc-compound quantum wells. Phys. Rev. B, 61(15), p. 9960-9963 (2000).
https://doi.org/10.1103/PhysRevB.61.9960
 
13. R.T. Senger, K.K. Bajaj, Binding energy of excitons in II-VI compound-semiconductor based quantum well structures. Phys. stat. sol. (b) 241(8), p. 1896-1900 (2004).
https://doi.org/10.1002/pssb.200402034
 
14. I.V. Ponomarev, L.I. Deych, V.A. Shuvayev, A.A. Lisyansky, Self-consistent approach for calculations of exciton binding energy in quantum wells. Physica E, 25, p. 539-553 (2005).
https://doi.org/10.1016/j.physe.2004.08.111
 
15. V.M. Kramar, M.V. Tkach, Exciton-phonon interaction and exciton energy in semiconductor nanofilms. Ukr. J. Phys. 54(10), p. 1027-1035 (2009).
 
16. Z.D. Kovalyuk, O.A. Politanska, O.N. Sydor, V.T. Maslyuk, Electrical and photoelectric characteristics of structures based on InSe and GaSe layered semiconductors irradiated with 12.5 MeV electrons. Fizika i tekhnika poluprov. 42(11), p. 1321-1326 (2008), in Russian.
 
17. L. Wendler, R. Pechstedt, Dynamical screening, collective excitations, and electron-phonon interaction in heterostructures and semiconductor quantum wells. Phys. stat. sol. (b), 141(1), p. 129-150 (1987).
https://doi.org/10.1002/pssb.2221410112
 
18. N. Mori, T. Ando, Electron–optical-phonon interaction in single and double heterostructures. Phys. Rev. B, 40(9), p. 6175-6188 (1989).
https://doi.org/10.1103/PhysRevB.40.6175
 
19. M.V. Tkach, Quasi-particles in Nanoheterosystems. Quantum Dots and Wires: A Manual. Chernivtsy Univ. Press, Chernivtsy, 2003 (in Ukrainian).
 
20. L.V. Keldysh, Coulomb interaction in thin films of semiconductors and semimetals. Pis'ma JETF, 29(11), p. 716-719 (1979), in Russian.
 
21. M. Kumagai, T. Takagahara, Excitonic and nonlinear optical properties of dielectric quantum-well-structure. Phys. Rev. B 40(12), p. 12359-81 (1989).
https://doi.org/10.1103/PhysRevB.40.12359
 
22. M.V. Tkach, V.M. Kramar, Electron-phonon interaction and the mechanisms of electron spectrum re-normalization in a flat nanofilm. Ukr. J. Phys. 53(8), p. 810-818 (2008).
 
23. O.V. Pugantseva, V.M. Kramar, Self-polarization effect and electron-phonon interaction contributions in forming of electron energy spectrum of PbI2 nanofilm embedded in E-MAA copolymer. J. Nano-Electron. Phys. 4(4), 04021(6 p.) (2012).
 
24. M.V. Tkach, V.M. Kramar, Thermal genesis of the bottom of main electron's energy band in a flat nanofilm. Ukr. J. Phys. 53(11), p. 1110-1118 (2008).
 
25. M.S. Brodin, I.V. Blonskii, Excitonic Processes in Layered Crystals, Naukova Dumka, Kiev, 1986 (in Russian).
 
26. O. Madelung, U. Rossler, H. Shulz, Non-Tetrahedraly Bonded Elements and Binary Compounds. Springer-Verglag, Berlin, 1998.
https://doi.org/10.1007/b71138
 
27. R. Minder, G. Ottaviani, C. Canali, Charge transport in layer semiconductors. J. Phys. Chem. Sol. 37(2), p. 417-424 (1976).
https://doi.org/10.1016/0022-3697(76)90023-8
 
28. I.V. Blonskii, M.S. Brodin, T.N. Sushkevych, Effect of anisotropy of the crystal structure PbJ2 on its spectral properties. Ukr. J. Phys. 22(11), p. 1907-1910 (1977), in Ukrainian.
 
29. J.A. Brogan, C.C. Berndt, G.P. Simon, D. Hewitt, Physical and relaxation properties of flame-sprayed ethylene-methacrylic acid copolymer. Polymer Eng. & Sci. 38(11), p. 1873-1881 (1998).
https://doi.org/10.1002/pen.10357