Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 2. P. 160-164.
https://doi.org/10.15407/spqeo17.02.160


                                                                 

References

1. Ye.L. Ivchenko, Optics of quantum wells and super-lattices / In the ook: Optics of nanostructures . Edited y A.F. Fedorov. St-Petersurg, "Nedra", 2005.
 
2. V. Shchukin, N.N. Ledentsov, D. imerg, Epitaxy of Nanostructures. erlin, Springer, 2003.
 
3. A. Krysa, J.S. Roerts, R.P. Green, L.R. Wilson, M. Garcia, J.W. Cockurn, MOVPE-grown quantum cascade lasers operating at ~9 μm wavelength . J. Crystal Growth, 272(1-4), p. 682-685 (2004).
https://doi.org/10.1016/j.jcrysgro.2004.08.066
 
4. M.J. Manfra, Molecular eam Epitaxy of Ultra-High Quality AlGaAs/GaAs Heterostructures: Enaling Physics in Low-Dimensional Electronic Systems . arXiv:1309.2717 [cond-mat.mes-hall].
 
5. W. Lu, N. Li; S.C. Shen, Y. Fu, M. Willander, Modeling on GaAs/AlGaAs quantum well infrared photodetector . 25th Intern. Conf. on Infrared and Millimeter Waves, eijing, China, Septemer 12-15, 2000.
 
6. T. Sarkar, S.K. Mazumder, Epitaxial design of a direct optically controlled GaAs/AlGaAs-ased heterostructure lateral superjunction power device for fast repetitive switching . IEEE Transition Electron Devices, 54(3), p. 589-600 (2007).
https://doi.org/10.1109/TED.2006.890231
 
7. A. Weerasekara, S. Matsik, M. Rinzan, A.G. Perera, M. uchanan, H.C. Liu, G. Winckel, A. Stintz, and S. Krishna, n-type GaAs/AlGaAs heterostructure detector with a 3.2 THz threshold frequency . Opt. Lett. 32(10), p. 1335-1337 (2007).
https://doi.org/10.1364/OL.32.001335
 
8. V. Dimastrodonato, L.O. Mereni, R.J. Young and E. Pelucchi, AlGaAs/GaAs/AlGaAs quantum wells as a sensitive tool for the MOVPE reactor environment . J. Crystal Growth, 312(21), p. 3057-3062 (2010).
https://doi.org/10.1016/j.jcrysgro.2010.07.021
 
9. C. Rossler, T. Feil, P. Mensch, T. Ihn, K. Ensslin, D. Schuh, and W. Wegscheider, Gating of high-moility two-dimensional electron gases in GaAs/AlGaAs heterostructures . New J. Phys. 12, 043007 (9pp), (2010).
 
10. S. Zyell, H. Schneider, S. Winnerl, M. Wagner, K. Kohler and M. Helm, Photoluminescence dynamics in GaAs/AlGaAs quantum wells under pulsed intersuand excitation . Appl. Phys. Lett. 99(4), 041103 (2011).
https://doi.org/10.1063/1.3615298
 
11. A.T. Hatke, M.A. Zudov, J.D. Watson, M.J. Manfra, L.N. Pfeiffer, K.W. West, Evidence for effective mass reduction in GaAs/AlGaAs quantum wells . Phys. Rev. , 87(16), 161307(R) (2013).
 
12. W. Trzeciakowski, .D. McCome, Tailoring the intersuand asorption in quantum wells . Appl. Phys. Lett. 55(9), p. 891-893 (1989).
https://doi.org/10.1063/1.101617
 
13. Q.X. Zhao, S. Wongmanerod, M. Willander, P.O. Holtz, E. Selvig, and. O. Fimland, Effects of monolyer AlAs insertion on modulation doped GaAs / AlxGa1-xAs quantum-well structures . Phys. Rev., 62(16), p.10984 (2000).
https://doi.org/10.1103/PhysRevB.62.10984
 
14. V.M. Kramar, Polaron inding energy in HgS/CdS nanofilms . Journ. Phys. Stud., 12(4), 4602 (6pp), 2008 (in Ukrainian).
 
15. M.V. Tkach, V.M. Kramar, Electron-phonon interaction and the mechanisms of electron spectrum renormalization in flat nanofilm . Ukr. J. Phys. 53(8), p. 810-818 (2008).
 
16. S. Adachi, GaAs, AlAs and AlxGa1-xAs material parameters for use in research and device applications . J. Appl. Phys. 58(3), p. R1-R29 (1985).
https://doi.org/10.1063/1.336070
 
17. G.Q. Hai, F.M. Peeters and J.T. Devreese, Electron optical-phonon coupling in AlxGa1-xAs quantum wells due to interface, sla, and half-space modes . Phys. Rev., 48, 4666 (1993).
https://doi.org/10.1103/PhysRevB.48.4666