Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2017. V. 20, N
2. P. 159-167 (2017). References 1. Dovbeshko G.I., Chegel V.I., Gridina N.Ya., Gnatyuk O.P., Shirshov Y.M., Tryndiak V.P., Todor I.M. Surface enhanced infrared absorption of nucleic acids on gold substrate. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2001. 4, No. 3. P. 202–206. 2. Dovbeshko G.I., Chegel V.I., Gridina N.Ya., Gnatyuk O.P., Shirshov Y.M., Tryndiak V.P., Todor I.M., Solyanik G.I. Surface enhanced infrared absorption of nucleic acids from tumour cells: an FTIR reflectance study. Biospectroscopy, USA. 2002. 67. P. 470–486. 3. Dovbeshko G.I. Molecular mechanism of interaction of biological molecule with nanostructures, ligands and low doses of ionizing and microwave irradiation. – Manuscript. The thesis applied for scientific degree of doctor of sciences in physics and mathematics on speciality 03.00.02 – Biophysics. – V.N. Karazin Kharkiv National University, Kharkiv, 2009. 4. Dovbeshko G.I., Gnatyuk O.P., Tryndiak V.P., Todor I.M., Solyanik G.I. Chehun V.F. in: Frontiers of Multifunctional Nanosystems. Eds. E. Buzaneva, P. Scharff. Amsterdam: Kluwer Academic Publ., 2002. P. 265–280. https://doi.org/10.1007/978-94-010-0341-4_19 5. Kuhne Ch., Steiner G., Fischer W.B., Salzer R. Surface enhanced FTIR spectroscopy on membrane. Fresenius J. Anal. Chem. 1998. 360. P. 750–754. https://doi.org/10.1007/s002160050799 6. Ataka K. and Heberle J. Biochemical applications of surface enhanced infrared absorption spectroscopy. Anal. Bioanal. Chem. 2007. 388. P. 47–54. https://doi.org/10.1007/s00216-006-1071-4 7. Ataka K., Heberle J. Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer. Biopolymers. 2006. 82, No. 4. P. 415–419. https://doi.org/10.1002/bip.20501 8. Dovbeshko G.I., Gnatyuk O.P., Chegel V.I., Shirshov Yu.M., Kosenkov D.V., Andreev E.A., Tajmir-Riahi H.A., Litvin P.M. Gold and colloidal gold surface influence on DNA conformational changes. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2004. 7, No. 3. P. 318–325. 9. Dovbeshko G., Fesenko O., Gnatyuk O., Shtogun Ya., Woods L., Bertarione S., Damin A., Scarano D., Zecchina A. in: Carbon Nanotubes. Eds. J.M. Marulanda, In-Tech., 2010. P. 697–719. 10. Freshney R. Ian. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. John Wiley & Sons, 2015. 12. Paddock S.W. (Ed.) Confocal Microscopy Methods and Protocols. Springer, 1999. 13. Hartstain A., Kirtley J.R., Tsang J.C. Enhancement of the infrared absorption of the molecular monolayers with thin metal overlayers. Phys. Rev. Lett. 1980. 45. P. 201–209. https://doi.org/10.1103/PhysRevLett.45.201 14. Osawa M., Ikeda M. Surface-enhanced infrared absorption of p-nitro benzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms. J. Phys. Chem. 1991. 95. P. 9914–9919. https://doi.org/10.1021/j100177a056 15. Kosobukin V.A. Collective modes in enhancement of external electric field on the surface of the metals. Doklady Akademii Nauk SSSR, Ser. Fiz. 1985. 49, No. 6. P. 1111–1120 (in Russian). 16. Kosobukin V.A. Effect of enhancement of external electric field near metal surface and its manifestation in spectroscopy. Poverkhnost'. Fizika, khimiya, mekhanika. 1983. 12. P. 5–20 (in Russian). 17. Osawa M. in: Vol. 1. Handbook of Vibrational Spectroscopy. Eds. J.M. Chalmers, P.R. Griffiths. Chichester: Wiley, 2002. P. 785–800. 18. Suetaka W. Surface Iinfrared and Raman Spectroscopy: Methods and Applications. New York: Plenum Press, 1995. https://doi.org/10.1007/978-1-4899-0942-8 19. Nishikawa Y., Fujiwara K., Ataka K., Osawa M. Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polimers. Anal. Chem. 1993. 65. P. 556–562. https://doi.org/10.1021/ac00053a011 20. Aroca R.F., Ross D.J., Domingo C. Surface-enhanced infrared spectroscopy. Appl. Spectrosc. 2004. 58. P. 324A–338A. https://doi.org/10.1366/0003702042475420 21. Lakowicz J.R., Shen B., Gryczynski Z., D'Auria I., Gryczynski S. Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem. and Biophys. Res. Communs. 2001. 286. P. 875–879. https://doi.org/10.1006/bbrc.2001.5445 22. Lakowicz J.R. Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 2001. 298. P. 1–24. https://doi.org/10.1006/abio.2001.5377 23. Bondar V.V., Kuryk M.V. Exciton luminescence on the interface antracene-gold. J. Exp. Theor. Phys. 1980. 78, No. 1. P. 94–99. 24. Aspnes D.E., Kinsbron E., Bacon D.D. Optical properties of Au: Sample effects. Phys. Rev. B. 1980. 21. P. 3290–3299. https://doi.org/10.1103/PhysRevB.21.3290 25. Maier S.A. Plasmonics: Fundamentals and Applications. Springer Science and Business Media LLC, 2007. 26. Boyd G.T., Yu Z.H., Shen Y.R. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B. 1986. 33, No. 6. P. 7923–7926. https://doi.org/10.1103/PhysRevB.33.7923 27. Lumdee C., Yun B., Kik P.G. Effect of surface roughness on substrate-tuned gold nanoparticle plasmon resonances. Nanoscale. 2015. 7, No. 9. P. 1–6. https://doi.org/10.1039/C4NR05893C 28. Andersen S.K.H., Pors A., Bozhevolnyi S.I. Gold photoluminescence wavelength and polarization engineering. ACS Photonics. 2015. 2, No. 3. P. 432–438. https://doi.org/10.1021/ph5004797 |